nes: If
If a wire of resisfance R is melted
and recast to halve of its length
what will be the new resistance of
wire ?
Answers
Answer:
becomes half
Explanation:
becomes half as R is directly proportional to length of the wire
Answer:
GIVEN :-
Expression for area of square = ( 4x² + 6x + 6x + 9 ) units².
TO FIND :-
An algebraic expression for the length of the side of the square.
SOLUTION :-
As we know that,
\implies \boxed{\boxed{\sf \: (side) ^{2} = Area}}⟹(side)2=Area
Now substitute the values,
\begin{gathered}\implies \sf \: (side) ^{2} = 4x ^{2} + 6x + 6x + 9 \\ \end{gathered}⟹(side)2=4x2+6x+6x+9
\begin{gathered}\implies \sf \: side = \sqrt{4x ^{2} + 6x + 6x + 9} \\ \end{gathered}⟹side=4x2+6x+6x+9
\begin{gathered}\implies \sf \: side = \sqrt{2x(2x + 3) + 3(2x + 3)} \\ \end{gathered}⟹side=2x(2x+3)+3(2x+3)
\begin{gathered}\implies \sf \: side = \sqrt{(2x + 3)(2x + 3)} \\ \end{gathered}⟹side=(2x+3)(2x+3)
\begin{gathered}\implies \sf \: side = \sqrt{(2x + 3) ^{2} } \\ \end{gathered}⟹side=(2x+3)2
\implies \underline{\boxed{\sf \: side =(2x + 3) \: units}}⟹side=(2x+3)units
Explanation:
GIVEN :-
Expression for area of square = ( 4x² + 6x + 6x + 9 ) units².
TO FIND :-
An algebraic expression for the length of the side of the square.
SOLUTION :-
As we know that,
\implies \boxed{\boxed{\sf \: (side) ^{2} = Area}}⟹(side)2=Area
Now substitute the values,
\begin{gathered}\implies \sf \: (side) ^{2} = 4x ^{2} + 6x + 6x + 9 \\ \end{gathered}⟹(side)2=4x2+6x+6x+9
\begin{gathered}\implies \sf \: side = \sqrt{4x ^{2} + 6x + 6x + 9} \\ \end{gathered}⟹side=4x2+6x+6x+9
\begin{gathered}\implies \sf \: side = \sqrt{2x(2x + 3) + 3(2x + 3)} \\ \end{gathered}⟹side=2x(2x+3)+3(2x+3)
\begin{gathered}\implies \sf \: side = \sqrt{(2x + 3)(2x + 3)} \\ \end{gathered}⟹side=(2x+3)(2x+3)
\begin{gathered}\implies \sf \: side = \sqrt{(2x + 3) ^{2} } \\ \end{gathered}⟹side=(2x+3)2
\implies \underline{\boxed{\sf \: side =(2x + 3) \: units}}⟹side=(2x+3)units