Physics, asked by chamolireena95, 2 months ago

nes: If
If a wire of resisfance R is melted
and recast to halve of its length
what will be the new resistance of
wire ?​

Answers

Answered by imsreesankars
1

Answer:

becomes half

Explanation:

becomes half as R is directly proportional to length of the wire

Answered by maximfreegaming
1

Answer:

GIVEN :-

Expression for area of square = ( 4x² + 6x + 6x + 9 ) units².

TO FIND :-

An algebraic expression for the length of the side of the square.

SOLUTION :-

As we know that,

\implies \boxed{\boxed{\sf \: (side) ^{2} = Area}}⟹(side)2=Area

Now substitute the values,

\begin{gathered}\implies \sf \: (side) ^{2} = 4x ^{2} + 6x + 6x + 9 \\ \end{gathered}⟹(side)2=4x2+6x+6x+9

\begin{gathered}\implies \sf \: side = \sqrt{4x ^{2} + 6x + 6x + 9} \\ \end{gathered}⟹side=4x2+6x+6x+9

\begin{gathered}\implies \sf \: side = \sqrt{2x(2x + 3) + 3(2x + 3)} \\ \end{gathered}⟹side=2x(2x+3)+3(2x+3)

\begin{gathered}\implies \sf \: side = \sqrt{(2x + 3)(2x + 3)} \\ \end{gathered}⟹side=(2x+3)(2x+3)

\begin{gathered}\implies \sf \: side = \sqrt{(2x + 3) ^{2} } \\ \end{gathered}⟹side=(2x+3)2

\implies \underline{\boxed{\sf \: side =(2x + 3) \: units}}⟹side=(2x+3)units

Explanation:

GIVEN :-

Expression for area of square = ( 4x² + 6x + 6x + 9 ) units².

TO FIND :-

An algebraic expression for the length of the side of the square.

SOLUTION :-

As we know that,

\implies \boxed{\boxed{\sf \: (side) ^{2} = Area}}⟹(side)2=Area

Now substitute the values,

\begin{gathered}\implies \sf \: (side) ^{2} = 4x ^{2} + 6x + 6x + 9 \\ \end{gathered}⟹(side)2=4x2+6x+6x+9

\begin{gathered}\implies \sf \: side = \sqrt{4x ^{2} + 6x + 6x + 9} \\ \end{gathered}⟹side=4x2+6x+6x+9

\begin{gathered}\implies \sf \: side = \sqrt{2x(2x + 3) + 3(2x + 3)} \\ \end{gathered}⟹side=2x(2x+3)+3(2x+3)

\begin{gathered}\implies \sf \: side = \sqrt{(2x + 3)(2x + 3)} \\ \end{gathered}⟹side=(2x+3)(2x+3)

\begin{gathered}\implies \sf \: side = \sqrt{(2x + 3) ^{2} } \\ \end{gathered}⟹side=(2x+3)2

\implies \underline{\boxed{\sf \: side =(2x + 3) \: units}}⟹side=(2x+3)units

Similar questions