never ever mane kabhi kisi bhi ladke ko propose nhi kiya but ek bar kiya tha but vo mera dare tha
ab kiski bari hai
adu or sohan on aye kya
Answers
Ha
⇝ Question :-
If the mean of \large\rm x \: \: and \: \: \dfrac{1}{x}xand
x
1
is M.
And the mean of \large\rm x^2 \: \: and \: \: \dfrac{1}{x^2}x
2
and
x
2
1
is KM²
then Find the Value of K.
⇝ Answer :-
\large\pink{\pmb{\frak{ \text The \: \text Value \: of \: \text K \: is \: 2}}}
TheValueofKis2
TheValueofKis2
⇝ Step by step Explanation :-
❒ Given in the Question that the mean of \large\rm x \: \: and \: \: \dfrac{1}{x}xand
x
1
is M,
\begin{gathered}:\longmapsto \rm \frac{x + \dfrac{1}{x} }{2} = M \\ \end{gathered}
:⟼
2
x+
x
1
=M
\begin{gathered}:\longmapsto \rm x + \frac{1}{x} = 2M \\ \end{gathered}
:⟼x+
x
1
=2M
\large \bigstar★ Squaring Both Sides :
\begin{gathered}:\longmapsto \rm \bigg(x + \frac{1}{x} \bigg)^{2} = 4 {M}^{2} \\ \end{gathered}
:⟼(x+
x
1
)
2
=4M
2
\begin{gathered}:\longmapsto \rm {x}^{2} + \frac{1}{x {}^{2} } + 2.x. \frac{1}{x} = 2M {}^{2} \\ \end{gathered}
:⟼x
2
+
x
2
1
+2.x.
x
1
=2M
2
\begin{gathered}:\longmapsto \rm {x}^{2} + \frac{1}{{x}^{2} } + 2 = 4M {}^{2} \\ \end{gathered}
:⟼x
2
+
x
2
1
+2=4M
2
\begin{gathered}\purple{ :\longmapsto \underline {\boxed{{\bf {x}^{2} + \frac{1}{ {x}^{2} } = 4M {}^{2} - 2} }}} \\ \end{gathered}
:⟼
x
2
+
x
2
1
=4M
2
−2
❒ Also According To Question the mean of \large\rm x^2 \: \: and \: \: \dfrac{1}{x^2}x
2
and
x
2
1
is KM² ,
\begin{gathered}:\longmapsto \rm \frac{ {x}^{2} + \dfrac{1}{ {x}^{2} } }{2} = {KM}^{2} - 1 \\ \end{gathered}
:⟼
2
x
2
+
x
2
1
=KM
2
−1
\begin{gathered}:\longmapsto \rm {x}^{2} + \frac{1}{ {x}^{2} } = 2(KM {}^{2} - 1) \\ \end{gathered}
:⟼x
2
+
x
2
1
=2(KM
2
−1)
\begin{gathered}:\longmapsto \rm {x}^{2} + \frac{1}{ {x}^{2} } = 2KM {}^{2} - 2 \\ \end{gathered}
:⟼x
2
+
x
2
1
=2KM
2
−2
\large \red\bigstar★ Substituting Value of \large\rm x^2 + \dfrac{1}{x^2}x
2
+
x
2
1
:
\begin{gathered}:\longmapsto \rm 4M {}^{2} - \cancel{2}= 2KM {}^{2} - \cancel{2} \\ \end{gathered}
:⟼4M
2
−
2
=2KM
2
−
2
\begin{gathered}:\longmapsto \rm 4 \: \cancel{M {}^{2} } = 2 K \: \cancel{M^{2} } \\ \end{gathered}
:⟼4
M
2
=2K
M
2
\begin{gathered}:\longmapsto \rm2 K =4 \\ \end{gathered}
:⟼2K=4
\begin{gathered}:\longmapsto \rm K = \cancel \frac{4}{2} \\ \end{gathered}
:⟼K=
2
4
\purple{ \large :\longmapsto \underline {\boxed{{\bf K = 2} }}}:⟼
K=2
Therefore,
\large \bf \blue\maltese \: \: \orange{ \underbrace{ \underline{The\:Value \: of \: K \: is \: 2}}}✠
TheValueofKis2