Math, asked by brainlessstem, 5 hours ago

Newbie here, nakakabaliw na po haha, paturo naman po! Maraming maraming salamat po talaga!

Attachments:

Answers

Answered by MysticSohamS
1

Answer:

your solution is as follows

pls mark it as brainliest

I have solved only two sub questions from each main question

rest do by yourself as self practice

Step-by-step explanation:

II   \:  \: Q.1 \\ solution :  \\ given \: equation \: of \: circle \: is \\ (x -  \sqrt{2} ) {}^{2}  + (y -  \sqrt{7} ) {}^{2}  = 10 \\  \\ comparing \: it \: with \: centre \: radius \\ form \: of \: circle \:  \\ we \: get \\ h =g =   \sqrt{2}  \\ k = f =  \sqrt{7}  \\ r   =  \sqrt{10} \\  \\ we \: know \: that \\ r =  \sqrt{g {}^{2}  + f {}^{2}  - c}  \\  \\  \sqrt{10}  =  \sqrt{( \sqrt{2}) {}^{2} + ( \sqrt{7}  ) {}^{2} - c  }  \\  \\  squaring \: both \: sides \\ we \: get \\ 10 = ( \sqrt{2} ) {}^{2}  + ( \sqrt{7} ) {}^{2}  - c \\  \\  = 2 + 7 - c \\  \\ c = 9 - 10 \\  \\ c =  - 1 \\  \\ so \: we \: have \\ general \: form \: of \: circle \: as \\ x {}^{2}  + y {}^{2}  + 2gx + 2fy + c = 0 \\  \\ x {}^{2}  + y {}^{2}  + 2 \sqrt{2} .x + 2 \sqrt{7} .y + ( - 91) = 0 \\  \\ x {}^{2}  + y {}^{2}  + 2 \sqrt{2} x + 2 \sqrt{7} y - 91 = 0 \\ which \: is \: required \:  \: generalised \: form \\ equation \: of \: circle

 Q.2 \\ solution  : \\ given \: equation \: of \: circle \: is \\  \\ (x -  \frac{1}{2}  \: ) {}^{2}  + (y +  \frac{1}{2} ) {}^{2}  =  \frac{169}{4}  \\  \\ comparing \: with \\ centre \: radius \: form \: of \: circle \\ we \: get \\  \\ h = g =  \frac{1}{2}  \\  \\k =  f=  \frac{ - 1}{2}  \\  \\ r =  \frac{13}{2}  \\  \\ we \: have \\ r =  \sqrt{g {}^{2}  + f {}^{2} - c }  \\  \\ \frac{13}{2}  =  \sqrt{( \frac{1}{2} ) {}^{2} + ( \frac{ - 1}{2}) {}^{2}   - c }  \\  \\ squaring \: both \: sides \\ we \: get \\  \\  \frac{169}{4}  =  \frac{1}{4}  +  \frac{1}{4}  - c \\  \\  \frac{169}{4}  =  \frac{1 + 1 - 4c}{4}  \\  \\ 169 = 2 - 4c \\  \\  \\ 4c =  - 167 \\  \\ c =  \frac{ - 167}{4}  \\  \\ now \: we \: know \: that \\ general \: form \: of \: circle \: is \:  \\ x {}^{2}  + y {}^{2}  + 2gx + 2fy + c = 0 \\  \\ x {}^{2}  + y {}^{2}  + 2 \times  \frac{1}{2} x + 2 \times ( \frac{ - 1}{2} y) -  \frac{167}{4}  = 0 \\  \\ x {}^{2}  + y {}^{2}  + x - y -  \frac{167}{4}  = 0 \\  \\ which \: is \: required \: \: general \:  equation \\ of \: circle

III \:  \: Q.1 \\ solution :  \\ given \:  \: equation \:   of \: circle \: is \\ x {}^{2}  + y {}^{2}   - 12x + 4y + 15 = 0 \\  \\ comparing \: it \: with \\ x {}^{2}  + y {}^{2}  + 2gx + 2fy + c = 0 \\ we \: get \\  \\ 2g =  - 12 \\ ∴ \: g = h =  - 6 \\  \\ 2f = 4 \\ ∴ \: f = k = 2 \\  \\ c = 15 \\   \\∴ \: coordinates \: of \: center = ( - g, - h) \\  = (6, - 2) \\  \\ we \: know \: that \\ r  =  \sqrt{g {}^{2} + f {}^{2} - c  }  \\  \\  =  \sqrt{( - 6) {}^{2}  + (2) {}^{2}  - 15}  \\  \\  =  \sqrt{36 + 4 - 15}  \\  \\  =  \sqrt{36 - 11}  \\  \\  =  \sqrt{25}  \\  \\ r = 5 \\  \\ so \: now \:   \:  we \: have \\ (x - h) {}^{2}  + (y - k) {}^{2}  = r {}^{2}  \\  \\ (x -  6 ) {}^{2}  + (y  - ( -  2)) {}^{2}  = (5) {}^{2}  \\  \\ ∴ \: (x - 6) {}^{2}  + (y + 2) {}^{2}  = 25

Similar questions