Math, asked by kumarkalash3236, 1 month ago

Nirmal got 95% marks in Mathematics, 75% marks in Hindi, 60% in English, 85%
in Science and 90% in Social Science. If each subject carries 100 marks, then find the
percentage of marks obtained by Nirmal in the aggregate of all the subjects.​

Answers

Answered by krishsharma987654
1

Step-by-step explanation:

it is same answer as your question hope it helps

Attachments:
Answered by BrainlyTwinklingstar
5

Given :

Percentage in Maths : 95%

Percentage in Hindi : 75%

Percentage in English : 60%

Percentage in Science : 85%

Percentage in Social : 90%

Total marks of each subject : 100

To find :

The percentage obtained in all the subjects totally.

Solution :

First we should find the marks obtained in each subject.

Marks obtained in Mathematics :

\sf \dashrightarrow 95\% \: of \: 100

\sf \dashrightarrow \dfrac{95}{100} \times 100

\sf \dashrightarrow \dfrac{19}{20} \times 100

\sf \dashrightarrow \dfrac{19 \times 100}{20} = \dfrac{1900}{20}

\sf \dashrightarrow \cancel \dfrac{1900}{20} = 95

Marks obtained in Hindi :

\sf \dashrightarrow 75\% \: of \: 100

\sf \dashrightarrow \dfrac{75}{100} \times 100

\sf \dashrightarrow \dfrac{3}{4} \times 100

\sf \dashrightarrow \dfrac{3 \times 100}{4} = \dfrac{300}{4}

\sf \dashrightarrow \cancel \dfrac{300}{4} = 75

Marks obtained in English :

\sf \dashrightarrow 60\% \: of \: 100

\sf \dashrightarrow \dfrac{60}{100} \times 100

\sf \dashrightarrow \dfrac{3}{5} \times 100

\sf \dashrightarrow \dfrac{3 \times 100}{5} = \dfrac{300}{5}

\sf \dashrightarrow \cancel \dfrac{300}{5} = 60

Marks obtained in Science :

\sf \dashrightarrow 85\% \: of \: 100

\sf \dashrightarrow \dfrac{85}{100} \times 100

\sf \dashrightarrow \dfrac{17}{20} \times 100

\sf \dashrightarrow \dfrac{17 \times 100}{20} = \dfrac{1700}{20}

\sf \dashrightarrow \cancel \dfrac{1700}{20} = 85

Marks obtained in social :

\sf \dashrightarrow 90\% \: of \: 100

\sf \dashrightarrow \dfrac{90}{100} \times 100

\sf \dashrightarrow \dfrac{9}{10} \times 100

\sf \dashrightarrow \dfrac{9 \times 100}{10} = \dfrac{900}{10}

\sf \dashrightarrow \cancel \dfrac{900}{10} = 90

Now, we can find the total percentage.

Total percentage obtained :

\sf \dashrightarrow \dfrac{Marks \: of \: all \: subjects}{Total \: marks} \times 100

\sf \dashrightarrow \dfrac{95 + 75 + 60 + 85 + 90}{500} \times 100

\sf \dashrightarrow \dfrac{405}{500} \times 100

\sf \dashrightarrow \cancel \dfrac{405}{5} = 81

Hence, the percentage obtained by Normal totally is 82%.

Similar questions