Math, asked by Ishansaha, 1 year ago

No. 13
Find the value of cot θ - cos θ
If cosec θ= √5

Attachments:

Answers

Answered by Anonymous
11
Given, cosec  \theta =  \sqrt{5}

 \textsf{\underline {By using the trigonometric identity}} ,

\fbox{\tt{ \sqrt{1\:+\:cosec^{2}\:\theta}}\:= \: cot\:\theta}

 \sqrt{\tt{1\:+\:\sqrt{(5)}^{2}\:\theta}} =  cot\:\theta

➡️ \fbox{\tt{ cot\:\theta \: =\: \sqrt{6}}} --> ( i )

Now,

\fbox{ \tt{\frac{1}{cosec\:\theta}}} =  \tt{sin\:\theta}

➡️  \tt{sin\:\theta} = \fbox{ \tt{\frac{1}{\sqrt{5}}}}

 \textsf{\underline {By using the trigonometric identity}} ,

 \fbox{\tt{\sqrt{1\:-\:sin^{2}\:\theta}}\: =\: cos\:\theta}

 \tt{\sqrt{1\:-\:(\frac{1}{\sqrt{5}}) ^{2}}\: =\: cos\:\theta}

➡️  \tt{\sqrt{\frac{4}{5}}} \:=\:cos\:\theta --> ( ii )

 \sf{\underline {Value \:of\:( cot\:\theta\:-\:cos\:\theta) }} :

Putting value from ( i ) and ( ii ),

➡️  \tt{cot\:\theta\:-\:cos\:\theta\:=\:\sqrt{6}\:-\:\sqrt{\frac{4}{5}}}

FadedPrince: nice
Anonymous: Thanks. ☺️
FadedPrince: ur name?
Anonymous: Chatting in comments is not allowed.
Similar questions