no 17 and 30. please answer
Attachments:
Answers
Answered by
1
30) LHS = 1-sinA/1+sinA
(rationalize the denominator)
LHS = 1-sinA/1+sinA × 1-sinA/1-sinA
LHS = (1-sinA)²/1²-sin²A
LHS = (1-sinA)²/1-sin²A
LHS = 1+sin²A-2sinA/cos²A
LHS = 1/cos²A + sin²A/cos²A - 2sinA/cos² A
LHS = sec²A + tan²A - 2tanA×secA
LHS = (secA - tanA)²
LHS = RHS
(rationalize the denominator)
LHS = 1-sinA/1+sinA × 1-sinA/1-sinA
LHS = (1-sinA)²/1²-sin²A
LHS = (1-sinA)²/1-sin²A
LHS = 1+sin²A-2sinA/cos²A
LHS = 1/cos²A + sin²A/cos²A - 2sinA/cos² A
LHS = sec²A + tan²A - 2tanA×secA
LHS = (secA - tanA)²
LHS = RHS
Similar questions