Math, asked by amishafilomeena1003, 2 days ago

no copied or silly answer​

Attachments:

Answers

Answered by mathdude500
54

\large\underline{\sf{Solution-}}

Given rational number is

\green{\bf :\longmapsto\:1.\overline{48} + 1.4191919...}

Let we first represent the above sum of two rational numbers in the form of p/q individually.

So, Consider

\red{\rm :\longmapsto\:1.\overline{48} }

Let assume that

\red{\rm :\longmapsto\:x = 1.\overline{48} -   -  - - (1) }

On multiply both sides by 100, we get

\red{\rm :\longmapsto\:100x = 148.\overline{48} -   -  - - (2) }

On Subtracting equation (1) from equation (2), we get

 \red{\rm :\longmapsto\:99x = 147 \: }

 \red{\rm :\longmapsto\:x = \dfrac{147}{99} \: }

Thus,

 \red{\rm \implies\:\boxed{ \tt{ \: 1.\overline{48} =  \frac{147}{99} \: }}}

Now Consider,

 \purple{\rm :\longmapsto\:1.41919... \: }

Let we assume that

 \purple{\rm :\longmapsto\:y = 1.41919... \: }

can be rewritten as

 \purple{\rm :\longmapsto\:y = 1.4 \: \overline {19}\: }

On multiply both sides by 10, we get

 \purple{\rm :\longmapsto\:10y = 14. \: \overline {19}\: -  -  -  - (3) }

On multiply by 100, we get

 \purple{\rm :\longmapsto\:1000y = 1419. \: \overline {19}\: -  -  -  - (4) }

On Subtracting equation (3) from equation (4), we get

 \purple{\rm :\longmapsto\:990y = 1405 }

 \purple{\rm :\longmapsto\:y = \dfrac{1405}{990}  }

Thus,

 \purple{\rm \implies\:\boxed{ \tt{ \: 1.4191919... =  \frac{1405}{990} \: }}}

Now, Consider,

\green{\bf :\longmapsto\:1.\overline{48} + 1.4191919...}

So, on substituting the values evaluated above, we get

 \green{\rm \:  =  \:\dfrac{147}{99}  + \dfrac{1405}{990} }

can be rewritten as

 \green{\bf \:  =  \:\dfrac{1470}{990}  + \dfrac{1405}{990} }

 \green{\bf \:  =  \:\dfrac{1470 + 1405}{990} }

 \green{\bf \:  =  \:\dfrac{2875}{990} }

 \green{\bf \:  =  \:\dfrac{575}{198} }

Hence,

 \green{\rm \implies\:\boxed{ \bf{ \: 1.\overline {48} + 1.4191919... = \dfrac{575}{198} } \: }}

More to know :-

Rational numbers :- Rational numbers are those numbers whom decimal representation is either terminating or non - terminating but repeating.

Irrational numbers :- Irrational number are those numbers whom decimal representation is neither terminating nor repeating.

Similar questions