Math, asked by rithika2480, 4 months ago

no irreverent ans and pls ans by steps​

Attachments:

Answers

Answered by Bidikha
14

Question -

Simplify -

 \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  +  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5 }  +  \sqrt{3} }

Solution -

 =  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  +  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} }

 =  \frac{( \sqrt{5}  +  \sqrt{3} )( \sqrt{5} +  \sqrt{3} ) }{( \sqrt{5}  -  \sqrt{3})( \sqrt{5}  +  \sqrt{3}  )}  +  \frac{( \sqrt{5}  -  \sqrt{3})( \sqrt{5} -  \sqrt{3})   }{( \sqrt{5} +  \sqrt{3})( \sqrt{5}  -  \sqrt{3} )  }

 =  \frac{( \sqrt{5} +  \sqrt{3}) {}^{2}   }{ {( \sqrt{5} )}^{2} -  ({ \sqrt{3}) }^{2}  }  +  \frac{ {( \sqrt{5} -  \sqrt{3} ) }^{2} }{ {( \sqrt{5}) }^{2} -  ({ \sqrt{3}) }^{2}  }

 =  \frac{( \sqrt{5} ) {}^{2} +  {( \sqrt{3}) }^{2} + 2 \times  \sqrt{5}  \times  \sqrt{3}   }{5 - 3}  +  \frac{( \sqrt{5}) {}^{2} +  {( \sqrt{3}) }^{2}   - 2 \times  \sqrt{5}  \times  \sqrt{3}  }{5 - 3}

 =  \frac{5 + 3 + 2 \sqrt{15} }{2}  +  \frac{5 + 3 - 2 \sqrt{15} }{2}

 =  \frac{8 + 2 \sqrt{15} }{2}  +  \frac{8 - 2 \sqrt{15} }{2}

Taking L. C. M we will get -

 =  \frac{8 + 2 \sqrt{15} + 8 - 2 \sqrt{15}  }{2}

 =  \frac{16}{2}

 = 8

Alternative method -

 =  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  }  +  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5} +  \sqrt{3}  }

Taking L. C. M we will get -

 =  \frac{ {( \sqrt{5} +  \sqrt{3}  ) }^{2}  +  {( \sqrt{5} -  \sqrt{3})  }^{2} }{( \sqrt{5}  -  \sqrt{3} )( \sqrt{5}  +    \sqrt{3} ) }

 =  \frac{ {( \sqrt{5}) }^{2}  +  {( \sqrt{3} )}^{2} + 2 \sqrt{15}  +  {( \sqrt{5} )}^{2}   +  {( \sqrt{3} )}^{2} - 2 \sqrt{15}  }{ {( \sqrt{5}) }^{2} -  {( \sqrt{3}) }^{2}  }

 =  \frac{5 + 3 + 2 \sqrt{15}  + 5 + 3 - 2 \sqrt{15} }{5 - 3}

 =  \frac{16}{2}

 = 8

Answered by XxMissCutiepiexX
44

Simplify -

 \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  +  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5 }  +  \sqrt{3} }

Solution -

 =  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  +  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} }

 =  \frac{( \sqrt{5}  +  \sqrt{3} )( \sqrt{5} +  \sqrt{3} ) }{( \sqrt{5}  -  \sqrt{3})( \sqrt{5}  +  \sqrt{3}  )}  +  \frac{( \sqrt{5}  -  \sqrt{3})( \sqrt{5} -  \sqrt{3})   }{( \sqrt{5} +  \sqrt{3})( \sqrt{5}  -  \sqrt{3} )  }

 =  \frac{( \sqrt{5} +  \sqrt{3}) {}^{2}   }{ {( \sqrt{5} )}^{2} -  ({ \sqrt{3}) }^{2}  }  +  \frac{ {( \sqrt{5} -  \sqrt{3} ) }^{2} }{ {( \sqrt{5}) }^{2} -  ({ \sqrt{3}) }^{2}  }

 =  \frac{( \sqrt{5} ) {}^{2} +  {( \sqrt{3}) }^{2} + 2 \times  \sqrt{5}  \times  \sqrt{3}   }{5 - 3}  +  \frac{( \sqrt{5}) {}^{2} +  {( \sqrt{3}) }^{2}   - 2 \times  \sqrt{5}  \times  \sqrt{3}  }{5 - 3}

 =  \frac{5 + 3 + 2 \sqrt{15} }{2}  +  \frac{5 + 3 - 2 \sqrt{15} }{2}

 =  \frac{8 + 2 \sqrt{15} }{2}  +  \frac{8 - 2 \sqrt{15} }{2}

Taking L. C. M we will get -

 =  \frac{8 + 2 \sqrt{15} + 8 - 2 \sqrt{15}  }{2}

 =  \frac{16}{2}

 = 8

Alternative method -

 =  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  }  +  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5} +  \sqrt{3}  }

Taking L. C. M we will get -

 =  \frac{ {( \sqrt{5} +  \sqrt{3}  ) }^{2}  +  {( \sqrt{5} -  \sqrt{3})  }^{2} }{( \sqrt{5}  -  \sqrt{3} )( \sqrt{5}  +    \sqrt{3} ) }

 =  \frac{ {( \sqrt{5}) }^{2}  +  {( \sqrt{3} )}^{2} + 2 \sqrt{15}  +  {( \sqrt{5} )}^{2}   +  {( \sqrt{3} )}^{2} - 2 \sqrt{15}  }{ {( \sqrt{5}) }^{2} -  {( \sqrt{3}) }^{2}  }

 =  \frac{5 + 3 + 2 \sqrt{15}  + 5 + 3 - 2 \sqrt{15} }{5 - 3}

 =  \frac{16}{2}

 = 8

Similar questions