Math, asked by jaymaynak, 1 day ago

no of a fraction is 5 more than it's denominator if 4 is added to the numerator and denominator the fraction obtained is 6upon5 find the fraction​

Answers

Answered by Anonymous
39

Given : Numerator of the fraction is 5 more than the denominator . If 4 is added to numerator and denominator we get 6/5 .

 \\ \\

To Find : Find the Rational Number

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN : For Solving this question we'll form the Equation first and can get the Answer . Let's Solve :

 \\ \\

 \maltese Calculating the Unknown Number :

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \bigg\{ \dfrac{Numerator}{Denominator} \bigg\} = \bigg\{ \dfrac{y + 5}{y} \bigg\} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \bigg\{ \dfrac{(y + 5) + 4}{y + 4} \bigg\} = \bigg\{ \dfrac{6}{5} \bigg\} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \bigg\{ \dfrac{(y + 5) + 4}{y + 4} \bigg\} = \bigg\{ \dfrac{6}{5} \bigg\} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \bigg\{ \dfrac{y + 9}{y + 4} \bigg\} = \bigg\{ \dfrac{6}{5} \bigg\} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { 6 \bigg( y + 4 \bigg) = 5 \bigg( y + 9 \bigg) } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { 6y + 24 = 5y + 45 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { 6y - 5y = 45 - 24 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { 6y - 5y = 21 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; {\underline{\boxed{\pmb{\frak{ y = 21 }}}}} \; {\green{\pmb{\bigstar}}} \\ \\ \\ \end{gathered}

 \\ \\

 \maltese Calculating the Rational Number :

  • Numerator = y + 5 = 21 + 5 = 26
  • Denominator = y = 21

 \\ \\

 \therefore \; The Rational Number is 26/21 .

 \\ \qquad{\rule{200pt}{2pt}}

Similar questions