Biology, asked by Aansika, 11 months ago

No. of chemicals present in a living cell ​

Answers

Answered by shalinijha85
0

Answer:

this well help you please make me brain list

Attachments:
Answered by subham322669
0

Explanation:

The Chemical Components of a Cell

Matter is made of combinations of elements—substances such as hydrogen or carbon that cannot be broken down or converted into other substances by chemical means. The smallest particle of an element that still retains its distinctive chemical properties is an atom. However, the characteristics of substances other than pure elements—including the materials from which living cells are made—depend on the way their atoms are linked together in groups to form molecules. In order to understand how living organisms are built from inanimate matter, therefore, it is crucial to know how all of the chemical bonds that hold atoms together in molecules are formed.

Go to:

Cells Are Made From a Few Types of Atoms

Each atom has at its center a positively charged nucleus, which is surrounded at some distance by a cloud of negatively charged electrons, held in a series of orbitals by electrostatic attraction to the nucleus. The nucleus in turn consists of two kinds of subatomic particles: protons, which are positively charged, and neutrons, which are electrically neutral. The number of protons in the atomic nucleus gives the atomic number. An atom of hydrogen has a nucleus composed of a single proton; so hydrogen, with an atomic number of 1, is the lightest element. An atom of carbon has six protons in its nucleus and an atomic number of 6 (Figure 2-1). The electric charge carried by each proton is exactly equal and opposite to the charge carried by a single electron. Since an atom as a whole is electrically neutral, the number of negatively charged electrons surrounding the nucleus is equal to the number of positively charged protons that the nucleus contains; thus the number of electrons in an atom also equals the atomic number. It is these electrons that determine the chemical behavior of an atom, and all of the atoms of a given element have the same atomic number.

Figure 2-1. Highly schematic representations of an atom of carbon and an atom of hydrogen.

Figure 2-1

Highly schematic representations of an atom of carbon and an atom of hydrogen. Although the electrons are shown here as individual particles, in reality their behavior is governed by the laws of quantum mechanics, and there is no way of predicting exactly (more...)

Neutrons are uncharged subatomic particles of essentially the same mass as protons. They contribute to the structural stability of the nucleus—if there are too many or too few, the nucleus may disintegrate by radioactive decay—but they do not alter the chemical properties of the atom. Thus an element can exist in several physically distinguishable but chemically identical forms, called isotopes, each isotope having a different number of neutrons but the same number of protons. Multiple isotopes of almost all the elements occur naturally, including some that are unstable. For example, while most carbon on Earth exists as the stable isotope carbon 12, with six protons and six neutrons, there are also small amounts of an unstable isotope, the radioactive carbon 14, whose atoms have six protons and eight neutrons. Carbon 14 undergoes radioactive decay at a slow but steady rate. This forms the basis for a technique known as carbon 14 dating, which is used in archaeology to determine the time of origin of organic materials.

The atomic weight of an atom, or the molecular weight of a molecule, is its mass relative to that of a hydrogen atom. This is essentially equal to the number of protons plus neutrons that the atom or molecule contains, since the electrons are much lighter and contribute almost nothing to the total. Thus the major isotope of carbon has an atomic weight of 12 and is symbolized as 12C, whereas the unstable isotope just discussed has an atomic weight of 14 and is written as 14C. The mass of an atom or a molecule is often specified in daltons, one dalton being an atomic mass unit approximately equal to the mass of a hydrogen atom.

Atoms are so small that it is hard to imagine their size. An individual carbon atom is roughly 0.2 nm in diameter, so that it would take about 5 million of them, laid out in a straight line, to span a millimeter. One proton or neutron weighs approximately 1/(6 × 1023) gram, so one gram of hydrogen contains 6 × 1023 atoms. This huge number (6 × 1023, called Avogadro's number) is the key scale factor describing the relationship between everyday quantities and quantities measured in terms of individual atoms or molecules. If a substance has a molecular weight of X, 6 × 1023 molecules of it will have a mass of X grams. This quantity is called one mole of the substance (Figure 2-2).

Similar questions