Math, asked by goldykumarrana123456, 11 months ago

no. of letters 1-4,4-7,7-10,10-13,13-16,16-19 no. of surnames 6,30,40,16,4,4 find median no. of letters in surnames​

Answers

Answered by Alcaa
3

Answer:

Median no. of letters in surnames​ = 8.05 .

Step-by-step explanation:

The given frequency distribution is ;

   No. of letters            f              Cumulative frequency,F

        1 - 4                      6                               6

        4 - 7                     30                             36

        7 - 10                   40                              76

       10 - 13                   16                              92

        13 - 16                   4                               96

        16 - 19                   4                               100

                              ∑ f = 100  

Now, the median formula is given by = x_L + \frac{\frac{N}{2} - F_L }{f_m} * c

where, x_L = Lower limit of median class

              N = Total Frequency

            f_m  = frequency of median class

            F_L = cumulative frequency of just above the median class frequency

              c = width of median class

So, First we calculate \frac{N}{2} = \frac{100}{2} = 50 .

Here, the cumulative frequency just greater than or equal to 50 is 76.

Hence, the median class is 7 - 10 .

And     x_L  =  7

             N =  100

            f_m  =  40

            F_L  =  36

               c =  3

Putting all these values in median formula we get,

 Median = 7 + \frac{\frac{100}{2} - 36 }{40} * 3 = 8.05 .

Other links for similar questions;

https://brainly.com/question/8847267

brainly.in/question/2883821

Answered by royviolet06
0

Answer:

hope it helps fsfhjkkhikofbiykvl

Attachments:
Similar questions