Math, asked by amitajaiswal7942, 6 months ago

no. of solutions of sq. root log3(3x^2).log9 (81x) = log9(x^3) is-​

Answers

Answered by pulakmath007
14

SOLUTION

TO DETERMINE

The number of solutions

 \displaystyle \sf{ \sqrt{ log_{3}(3 {x}^{2} ) . log_{9}(81x) } =  log_{9}( {x}^{3} )  }

FORMULA TO BE IMPLEMENTED

We are aware of the formula on logarithm that

 \sf{1.  \:  \: \:  log( {a}^{n} ) = n log(a)  }

 \sf{2. \:  \:  log(ab) =  log(a)   +  log(b) }

 \displaystyle \sf{3. \:  \:  log \bigg( \frac{a}{b}  \bigg)  =  log(a) -  log(b)  }

 \sf{4. \:  \:   log_{a}(a)   = 1}

EVALUATION

Here the given equation is

 \displaystyle \sf{ \sqrt{ log_{3}(3 {x}^{2} ) . log_{9}(81x) } =  log_{9}( {x}^{3} )  }

We now solve for x as below

 \displaystyle \sf{ \sqrt{ log_{3}(3 {x}^{2} ) . log_{9}(81x) } =  log_{9}( {x}^{3} )  }

 \displaystyle \sf{ \implies \:  \sqrt{ \: [  \: log_{3}(3  ) +log_{3}( {x}^{2} ) ] . [ \: log_{9}(81) +log_{9}(x) ] } =  log_{9}( {x}^{3} )  }

 \displaystyle \sf{ \implies \:  \sqrt{ \: [  \: 1 +2log_{3}( x ) ] . [  \: 2 +log_{9}(x) ] } =  3log_{9}( x) }

 \displaystyle \sf{ \implies \:  \sqrt{ \: [  \: 1 +4log_{9}( x ) ] . [  \: 2 +log_{9}(x) ] } =  3log_{9}( x) }

Let

 \displaystyle \sf{y = log _{9}( x ) }

Then above equation becomes

 \displaystyle \sf{ \implies \:  \sqrt{(1 + 4y)(2 + y)} =  3y }

 \displaystyle \sf{ \implies \:  (1 + 4y)(2 + y) = 9 {y}^{2}  }

 \displaystyle \sf{ \implies \:  2 + y + 8y + 4 {y}^{2}  = 9 {y}^{2}  }

 \displaystyle \sf{ \implies \:  5 {y}^{2}   - 9y  - 2 = 0 }

 \displaystyle \sf{ \implies \:  5 {y}^{2}   - 10y  + y -  2 = 0 }

 \displaystyle \sf{ \implies \:  (y - 2)(5y + 1) = 0 }

 \displaystyle \sf{ \implies \: y = 2 \:  ,\:  -  \frac{1}{5}  }

Now

 \displaystyle \sf{  \: y = 2 \:  \: gives}

 \displaystyle \sf{ log _{9}( x ) = 2 }

 \displaystyle \sf{ \implies \: x =  {9}^{2} }

 \displaystyle \sf{ \implies \: x =81 }

Now

 \displaystyle \sf{  \: y =   -  \frac{1}{5}  } does not satisfy the given equation

So the only solution is x = 81

FINAL ANSWER

The number of solutions = 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Similar questions