Math, asked by PRINCE000001, 1 month ago

No Spam
Answer only if you know the correct answer.
span answers will not be tolerated.

Attachments:

Answers

Answered by sakshamsrivastava937
0

Step-by-step explanation:

log10(-1)^1/3= 0

because log10=1

and log1=0

so ,we can say that

log10(-1)=0 answer

option (A) is correct

I think so

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\red{\rm :\longmapsto\: log \bigg(\bigg[2 +  \sqrt{5} \bigg]^{\dfrac{1}{3} } +\bigg[2  -  \sqrt{5} \bigg]^{\dfrac{1}{3} }   \bigg) }

To evaluate this value, Let first evaluate

\blue{\bf :\longmapsto\:\bigg[2 +  \sqrt{5} \bigg]^{\dfrac{1}{3} } + \bigg[2  -   \sqrt{5} \bigg]^{\dfrac{1}{3} }}

Let assume that,

{\bf :\longmapsto\:x \:  =  \: \bigg[2 +  \sqrt{5} \bigg]^{\dfrac{1}{3} } + \bigg[2  -   \sqrt{5} \bigg]^{\dfrac{1}{3} }}

On Cubing both sides, we get

\rm :\longmapsto\: {x}^{3} = [2 +  \sqrt{5} ] + [2 -  \sqrt{5} ] + 3[2 +  \sqrt{5} ][2 -  \sqrt{5} ]\bigg(\bigg[2 +  \sqrt{5} \bigg]^{\dfrac{1}{3} } + \bigg[2  -   \sqrt{5} \bigg]^{\dfrac{1}{3} }\bigg)

\red{\bigg \{ \because \tt \:  {(x + y)}^{3}  =  {x}^{3} +  {y}^{3} + 3xy(x + y)  \bigg \}}

Also, we know that,

 \red{\boxed{ \tt{  (x + y)(x - y) =  {x}^{2}  -  {y}^{2}}}}

\rm :\longmapsto\: {x}^{3} = 4 + 3(4 - 5)(x)

\rm :\longmapsto\: {x}^{3} = 4 + 3( - 1)(x)

\rm :\longmapsto\: {x}^{3} = 4 - 3x

\rm :\longmapsto\: {x}^{3} + 3x - 4 = 0

can be rewritten as

\rm :\longmapsto\: {x}^{3} - x + 4x - 4 = 0

\rm :\longmapsto\:x( {x}^{2} - 1) + 4(x - 1) = 0

\rm :\longmapsto\:x( {x} - 1)(x + 1)+ 4(x - 1) = 0

\rm :\longmapsto\:(x - 1)( {x}^{2} + x + 4) = 0

\bf\implies \:x = 1

and

\rm :\longmapsto\: {x}^{2} + x + 4 = 0 \: has \: no \: real \: root \: as \:  {b}^{2} - 4ac < 0

Hence,

The value of

{\bf :\longmapsto\: \: \bigg[2 +  \sqrt{5} \bigg]^{\dfrac{1}{3} } + \bigg[2  -   \sqrt{5} \bigg]^{\dfrac{1}{3} }} = 1

Therefore,

{\bf :\longmapsto\: \: log\bigg(\bigg[2 +  \sqrt{5} \bigg]^{\dfrac{1}{3} } + \bigg[2  -   \sqrt{5} \bigg]^{\dfrac{1}{3} }} \bigg)

\rm \:  =  \:  \:  log(1)

\rm \:  =  \:  \: 0

Hence,

The value of

{\bf :\longmapsto\: \: log\bigg(\bigg[2 +  \sqrt{5} \bigg]^{\dfrac{1}{3} } + \bigg[2  -   \sqrt{5} \bigg]^{\dfrac{1}{3} }} \bigg) = 0

Thus,

  • Option (A) is correct.

Additional Information :-

\boxed{ \rm{  log(xy)  =  log(x)  +  log(y) }}

\boxed{ \rm{  log( \frac{x}{y} )  =  log(x)   -  log(y) }}

\boxed{ \rm{  log( {x}^{y} ) = y log(x)}}

\boxed{ \rm{  log_{x}(y) =  \frac{logy}{logx}}}

\boxed{ \rm{  log_{x}(x) =  1}}

\boxed{ \rm{  {e}^{logx} = x}}

\boxed{ \rm{  {e}^{ylogx} =  {x}^{y} }}

\boxed{ \rm{  {a}^{y log_{a}(x) } =  {x}^{y} }}

\boxed{ \rm{  {a}^{ log_{a}(x) } =  x }}

Similar questions