No spam
Give the correct answer
Answers
Answer:
PLEASE MARK ME BRAINLIEST
Step-by-step explanation:
1) Given number = 1/(√7-√6)
Rationalising factor of √7-√6 = √7+√6
On Rationalising the denominator then
=>[1/(√7-√6)]×[(√7+√6)/(√7+√6)]
=> (√7+√6)/(√7-√6)(√7+√6)
=> (√7+√6)/[(√7)²-(√6)²]
Since (a+b)(a-b) = a²-b²
=> (√7+√6)/(7-6)
=> (√7+√6)/1
=> √7+√6
2)Given number = 1/(√5+√2)
Rationalising factor of √5+√2 = √5-√2
On Rationalising the denominator then
=>[1/(√5+√2)]×[(√5-√2)/(√5-√2)]
=> (√5-√2)/(√5-√2)(√5+√2)
=> (√5-√2)/[(√5)²-(√2)²]
Since (a+b)(a-b) = a²-b²
=> (√5-√2)/(5-2)
=> (√5-√2)/3
3)Given number = 1/(√7-2)
Rationalising factor of √7-2 = √7+2
On Rationalising the denominator then
=>[1/(√7-2)]×[(√7+2)/(√7+2)]
=> (√7+2)/(√7+2)(√7-2)
=> (√7+2)/[(√7)²-(2)²]
Since (a+b)(a-b) = a²-b²
=> (√7+2)/(7-4)
=> (√7+2)/3
4)Given number = 1/√2
Rationalising factor of √2 = √2
=> (1/√2)×(√2/√2)
=> √2/(√2×√2)
=> √2/2
5)Given number = 1/(2+√3)
Rationalising factor of 2+√3= 2-√3
On Rationalising the denominator then
=>[1/(2+√3)]×[(2-√3)/(2-√3)]
=> (2-√3)/(2+√3)(2-√3)
=> (2-√3)/[(2)²-(√3)²]
Since (a+b)(a-b) = a²-b²
=> (2-√3)/(4-3)
=> (2-√3)/1
=> 2-√3
6)Given number = 1/(√3-√2)
Rationalising factor of √3-√2 = √3+√2
On Rationalising the denominator then
=>[1/(√3-√2)]×[(√3+√2)/(√3+√2)]
=> (√3+√2)/(√3-√2)(√3+√2)
=> (√3+√2)/[(√3)²-(√2)²]
Since (a+b)(a-b) = a²-b²
=> (√3+√2)/(3-2)
=> (√3+√2)/1
=> √3+√2
7)Given number = (64)½
=> (2×2×2×2×2×2)½
=> (2⁶)½
=> (2)⁶/²
=> 2³
=> 8
8) Given number = (32)⅕
=>(2×2×2×2×2)⅕
=> (2⁵)⅕
=> (2)⁵/⁵
=> 2¹
=> 2
9) Given number = (125)⅓
=> (5³)⅓
=> 5³/³
=>5
10) Given number = 9³/²
=> (3²)³/²
=> 3³
=> 3×3×3
=> 27
Answer :-
1.c
2.c
3.c
4.d
5.a
6.b
7.a
8.c
9.a
10.b
Used formulae:-
- (a+b)(a-b) = a²-b²
- The Rationalising factor of √a+√b is √a-√b
- The Rationalising factor of√a-√b is √a+√b