Math, asked by Anonymous, 1 month ago

NO SPAM

if you spam your g/b leaves u

A,B,C are three points on OX, OY ,OZ respectively at distances a, b, c (a not equal to zero, b not equal to zero, c not equal to zero) from the origin O .Find the point from co-ordinates of the point which is equidistant from A, B, C and O

Answers

Answered by rekhakhandal469
3

QUESTION

A,B,C are three points on OX, OY ,OZ respectively at distances a, b, c (a not equal to zero, b not equal to zero, c not equal to zero) from the origin O .Find the point from co-ordinates of the point which is equidistant from A, B, C and O.

ANSWER

Correct Answer is -

  • ( 2a , 2b 2c )

  • Let P be the required point (x,y,z) and the point
  • A,B,C and O are (a,0,0),(0,b,0),(0,0,c) and (0,0,0) ;
  • We are given that PO=PA=PB=PC.

  • Taking PO=PA or PO

  • 2
  • =PA 2
  • , we get
  • x 2 +y 2 +z
  • 2 =(x−a)
  • 2 +y 2 +z 2

  • 0=a 2
  • −2ax
  • i.e.
  • x= 2a

  • Similarly taking PO
  • 2 =PB
  • 2 and PO
  • 2 =PC 2
  • , we get
  • y= 2b and
  • z= 2c

THANK YOU

Answered by Anonymous
3

 \huge\star\underline{\mathbb\orange{a} \mathbb\blue{n } \mathbb\purple{ Տ} \mathbb\pink{wer}}\star\:

Let P be the required point (x,y,z) 

and the point

A,B,C and O are (a,0,0),(0,b,0),(0,0,c) and (0,0,0) ;

We are given that PO=PA=PB=PC.

____________________________

Taking PO=PA or PO^2=PA^2, 

we get

x^2+y^2+z^2=(x−a)^2+y^2+z^2

0=a^2−ax^2   x=a^2

____________________________

Similarly taking PO2=PB2 and PO2=PC2, we get 

y=b^2 and z=c^2

Similar questions