Math, asked by symashah000, 2 months ago

No spam otherwise u guys will be reported​

Attachments:

Answers

Answered by angelbhowmik3
1

Answer:

tan pie/8 . tan 7pie/8. tan 3pie/8 . tan 5pie/8 [rearranging]

= tan (pie/8) . tan ( 2×pie/2-pie/8) . tan 3pie/2 . tan (2×pie/2-3pie/8) [formula]

tan pie/8 .tan pie/8 . tan 3pie/8 . tan 3pie /8 [minus are cancelled out

=1 (RHS)

Answered by mathdude500
4

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:tan \bigg(\dfrac{\pi}{8}  \bigg)tan \bigg(\dfrac{3\pi}{8}  \bigg)tan \bigg(\dfrac{5\pi}{8}  \bigg)tan \bigg(\dfrac{7\pi}{8}  \bigg) = 1

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:tan \bigg(\dfrac{\pi}{8}  \bigg)tan \bigg(\dfrac{3\pi}{8}  \bigg)tan \bigg(\dfrac{5\pi}{8}  \bigg)tan \bigg(\dfrac{7\pi}{8}  \bigg)

We know,

\rm :\longmapsto\:\dfrac{\pi}{8}  + \dfrac{3\pi}{8}  = \dfrac{\pi}{2}

\rm :\longmapsto\: \dfrac{3\pi}{8}  = \dfrac{\pi}{2}  - \dfrac{\pi}{8}

So,

\rm :\longmapsto\: tan \bigg(\dfrac{3\pi}{8} \bigg)  =tan \bigg( \dfrac{\pi}{2}  - \dfrac{\pi}{8} \bigg)

\rm :\longmapsto\: tan \bigg(\dfrac{3\pi}{8} \bigg)  =cot \bigg(\dfrac{\pi}{8} \bigg)

\rm :\longmapsto\: tan \bigg(\dfrac{3\pi}{8} \bigg)  =\dfrac{1}{tan \bigg(\dfrac{\pi}{8}  \bigg)}

\rm :\longmapsto\: tan \bigg(\dfrac{3\pi}{8} \bigg) tan \bigg(\dfrac{\pi}{8}  \bigg) = 1 -  -  - (1)

Again, we know that,

\rm :\longmapsto\:\dfrac{5\pi}{8}  + \dfrac{7\pi}{8}  = \dfrac{3\pi}{2}

\rm :\longmapsto\: \dfrac{7\pi}{8}  = \dfrac{3\pi}{2}  - \dfrac{5\pi}{8}

So,

\rm :\longmapsto\: tan \bigg(\dfrac{7\pi}{8} \bigg)  =tan \bigg( \dfrac{3\pi}{2}  - \dfrac{5\pi}{8} \bigg)

\rm :\longmapsto\: tan \bigg(\dfrac{7\pi}{8} \bigg)  =cot \bigg(\dfrac{5\pi}{8} \bigg)

\rm :\longmapsto\: tan \bigg(\dfrac{7\pi}{8} \bigg)  =\dfrac{1}{tan \bigg(\dfrac{5\pi}{8}  \bigg)}

\rm :\longmapsto\: tan \bigg(\dfrac{5\pi}{8} \bigg) tan \bigg(\dfrac{7\pi}{8}  \bigg) = 1 -  -  - (2)

Now, Consider

\rm :\longmapsto\:tan \bigg(\dfrac{\pi}{8}  \bigg)tan \bigg(\dfrac{3\pi}{8}  \bigg)tan \bigg(\dfrac{5\pi}{8}  \bigg)tan \bigg(\dfrac{7\pi}{8}  \bigg)

can be rewritten as using equation (1) and (2) as

\rm \:  =  \:  \:1 \times 1

\rm \:  =  \:  \:1

Hence,

\rm :\longmapsto\:tan \bigg(\dfrac{\pi}{8}  \bigg)tan \bigg(\dfrac{3\pi}{8}  \bigg)tan \bigg(\dfrac{5\pi}{8}  \bigg)tan \bigg(\dfrac{7\pi}{8}  \bigg) = 1

Additional Information :-

Sign of Trigonometric ratios in Quadrants

sin (90°-θ)  =  cos θ

cos (90°-θ)  =  sin θ

tan (90°-θ)  =  cot θ

csc (90°-θ)  =  sec θ

sec (90°-θ)  =  csc θ

cot (90°-θ)  =  tan θ

sin (90°+θ)  =  cos θ

cos (90°+θ)  =  -sin θ

tan (90°+θ)  =  -cot θ

csc (90°+θ)  =  sec θ

sec (90°+θ)  =  -csc θ

cot (90°+θ)  =  -tan θ

sin (180°-θ)  =  sin θ

cos (180°-θ)  =  -cos θ

tan (180°-θ)  =  -tan θ

csc (180°-θ)  =  csc θ

sec (180°-θ)  =  -sec θ

cot (180°-θ)  =  -cot θ

sin (180°+θ)  =  -sin θ

cos (180°+θ)  =  -cos θ

tan (180°+θ)  =  tan θ

csc (180°+θ)  =  -csc θ

sec (180°+θ)  =  -sec θ

cot (180°+θ)  =  cot θ

sin (270°-θ)  =  -cos θ

cos (270°-θ)  =  -sin θ

tan (270°-θ)  =  cot θ

csc (270°-θ)  =  -sec θ

sec (270°-θ)  =  -csc θ

cot (270°-θ)  =  tan θ

sin (270°+θ)  =  -cos θ

cos (270°+θ)  =  sin θ

tan (270°+θ)  =  -cot θ

csc (270°+θ)  =  -sec θ

sec (270°+θ)  =  cos θ

cot (270°+θ)  =  -tan θ

Similar questions