No spam please.
Find the value of
( 1 + tan20°) (1 + tan25°)
Answers
Answered by
0
(1+tan 20)(1+tan 25)-2
=1 + tan 25 + tan 20 + tan20 × tan25 - 2
=tan 20 + tan 25 + tan20 × tan 25 -1
using tan(A+B)=(tan A + tan B)/(1-tan A×tan B)
⇒tan(A+B)×(1-tan A×tan B)=tan A+ tan B
take A=20, B=25
⇒tan(20+25)×(1-tan 20×tan 25)=tan 20 + tan 25
⇒tan(45)×(1-tan 20×tan 25)=tan 20 + tan 25
⇒1×(1-tan 20×tan 25)=tan 20 + tan 25
⇒1 - tan 20×tan 25=tan 20 + tan 25
⇒tan 20 + tan 25 + tan 20 × tan 25 - 1 = 0
Answered by
4
given
( 1 + tan20°) ( 1 + tan25°)
using trigonometry properties
{ ( 1 + tanA)(1 + tanB) =2
if A + B = 45° }
so
value of (1 + tan20°)(1 + tan45°) = 2
.....................
Hope it may Help you.✌️
Similar questions