Math, asked by Anonymous, 6 months ago

no spam please
humble request....​

Attachments:

Answers

Answered by Anonymous
12

Given:-

\begin{lgathered} \boxed{\boxed{\begin{array}{c|c|c|c|c|c|c} 0-20 & 20-40&40-60&60-80&80-100&100-120&120-140\\4&15&23&12&16&8&2{}\end{array}}} \end{lgathered}

Find:-

  • Mean, median and mode of the given data

Solution:-

\huge{\underline{\bf{Mean:}}}

\begin{gathered}\boxed{\begin{array}{ccccc}\sf Class\: interval&\sf Frequency \:  f_{i}&\sf x_{i} & \sf f_i x_i\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{} &\frac{\qquad \qquad \qquad \qquad\qquad}{} \\\sf 0-20&\sf 4&\sf 10 & \sf40 \\\\\sf 20-40 &\sf 15&\sf 30 & \sf450  \\\\\sf 40-60 &\sf 23 &\sf 50 & \sf1150 \\\\\sf 60-80&\sf 12&\sf 70 & \sf840 \\\\\sf 80-100 &\sf 16 &\sf 90 & \sf1440 \\\\\sf 100-120 &\sf 8 &\sf 110 & \sf880 \\\\\sf 120-140 &\sf 2 &\sf 130 & \sf260 \\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{\bf{\sum\limits\:f_{i}=80}}&\frac{\qquad \qquad \qquad \qquad\qquad}{} & \frac{\qquad \qquad \qquad \qquad}{\bf{\sum\limits\:f_{i}x_{i}=5060}} \end{array}} \end{gathered}

we, know that

\underline{\boxed{\sf Mean = \dfrac{\Sigma f_i x_i}{\Sigma f_i}}}

 \sf where \small{ \begin{cases}  \sf\Sigma f_i x_i = 5060\\\sf \Sigma f_i = 80 \end{cases}}

\bigstar Substituting these values:

\implies\sf Mean = \dfrac{\Sigma f_i x_i}{\Sigma f_i} \\  \\

\implies\sf Mean = \dfrac{5060}{80} \\  \\

\implies\sf Mean = \dfrac{506}{8} \\  \\

\implies\sf Mean =63.5\\  \\

\underline{\boxed{\sf \therefore  Mean \:of\:the\: following\:data\:is\:63.5}}

\qquad ____________________

\huge{\underline{\bf{Mode:}}}

we, know that the mode is that the no. which appears the most or the no. which hav higher frequency.

Here, we have

4,5,23,12,16,8,2

Here, all no. are in equal frequency

So, There is No Mode.

\underline{\boxed{\sf \therefore  Mode \:of\:the\: following\:data\:is\:0}}

\qquad ____________________

\huge{\underline{\bf{Median:}}}

we, have

4,5,23,12,16,8,2

Arranging it in ascending order:

2,4,5,8,12,16,23

Here, we have 7 no. which is odd in no.

Now, finding median

 \underline{\boxed{\sf Median =  {\bigg \lgroup\dfrac{n + 1}{2} \bigg \rgroup}^{th} }}

 \sf where \small{ \begin{cases}  \sf n = 7 \end{cases}}

\bigstar Substituting thus value:

 \implies\sf Median =  {\bigg \lgroup\dfrac{n + 1}{2} \bigg \rgroup}^{th} \\  \\

 \implies\sf Median =  {\bigg \lgroup\dfrac{7 + 1}{2} \bigg \rgroup}^{th} \\  \\

 \implies\sf Median =  {\bigg \lgroup\dfrac{8}{2} \bigg \rgroup}^{th} \\  \\

 \implies\sf Median = 4^{th} \: term\\  \\

:\to\sf Median = 4^{th} \: term = 8\\  \\

:\to\sf Median = 8\\  \\

\underline{\boxed{\sf \therefore  Median \:of\:the\: following\:data\:is\:8}}

Answered by Anonymous
4

Yeah I'll follow back.....

Similar questions