Physics, asked by ShivamKashyap08, 1 year ago

No spam please!!!
Need Correct answers!!!!!!​

Attachments:

Answers

Answered by itzIntrovert
13

\huge\bigstar\underline\pink{Answer}

\boxed{refer\:to\: attachment}

Hope you know derivation of equation of trajectory

\large\blue{equation\:of\: trajectory}

Y = x1 tan [ 1- x1/R]. .......(1)

R = x1 + x2

putting the value of R in 1st equation

Y = x1 tan ∅ [ 1- x1/(x1+x2)]

y = x1 tan [ x1 + x2 - x1/ x1 + x2]

y = x1 tan (x2/ x1 - x2 )

y = (x1x2/x1+x2)tan∅

\boxed{option\:2\:is\: correct}

Attachments:
Answered by Anonymous
25

Answer:

\displaystyle{y=\left[\dfrac{x_1x_2}{x_1+x_2}\right]\tan\theta}

Option 2.  is correct .

Explanation:

We have :

Range ( R ) = u² sin 2 θ / g        [ sin 2 θ = 2 sin θ cos θ  ]

R = u² 2 sin θ cos θ / g

Taking reciprocal :

1 / R = g / u² 2 sin θ cos θ   .... ( i )

We have equation of Trajectory :

\displaystyle{y=x \ \tan\theta-\left[\dfrac{g}{2 \ u^2\cos^2\theta}\right]x^2}

Multiply ans divide by sin θ in x² term

\displaystyle{y=x \ \tan\theta-\left[\dfrac{g}{2 \ u^2\cos^2\theta\times\dfrac{\sin\theta}{\sin\theta} }\right]x^2}\\\\\\\displaystyle{y=x \ \tan\theta-\left[\dfrac{g}{2 \ u^2\sin\theta\cos\theta\times\dfrac{\cos\theta}{\sin\theta} }\right]x^2}

From ( i )  we have :

1 / R = g / u² 2 sin θ cos θ  

\displaystyle{y=x \ \tan\theta-\left[\dfrac{\tan\theta}{\text{R}}\right]x^2}\\\\\\\displaystyle{y=\tan\theta\left[x-\dfrac{x^2}{\text{R}} \right]}

Here we have  R  =  x₁  +  x₂   &  x =  x₁

\displaystyle{y=\tan\theta\left[x_1-\dfrac{x_1^2}{x_1+x_2} \right]}\\\\\\\displaystyle{y=\tan\theta\left[x_1\left(1-\dfrac{x_1}{x_1+x_2}\right) \right]}\\\\\\\displaystyle{y=\tan\theta\left[x_1\left(\dfrac{x_1+x_2-x_1}{x_1+x_2}\right) \right]}\\\\\\\displaystyle{y=\tan\theta\left[x_1\left(\dfrac{x_2}{x_1+x_2}\right) \right]}

\displaystyle{y=\tan\theta\left[\dfrac{x_1x_2}{x_1+x_2}\right]}

Hence we get answer .

Similar questions