Math, asked by Anonymous, 1 year ago

❌ No spamming❌

_____________________

⭐ If sin A = 3/4 ........ calculate cos A and tan A

_____________________

✔❤ With explaination ❤

Answers

Answered by Anonymous
2
Hi.

Good Question and Keep Progressing.

Here is your answer---

__________________________

Given---
  Sin A = 3/4

For Cos A ,

  We know the Relation,
             
                   Sin^2 A + Cos^2 A = 1
 Thus,              (3/4)^2 + Cos^2 A = 1
                          Cos^A = 1 - (9/16)
                           Cos^2 A =  7/16
                            Cos A = √(7/16
                            Cos A = (√7)/4
                    
           Thus, Cos A = (√7)/4

The value of the Cos A is(√7)/4.

For tan A,

We know the relation,

              tan A = Sin A / Cos A 
             tan A  = (3/4)/({√7}/4)
             tan A  = (3/4) × (4/{√7})
             tan A   = 3/√7



Thus, the value of tan A is 3/√7.

_________________________

Hope it helps.

Have a nice day.

Anonymous: are u teacher
Anonymous: or what
Anonymous: No, I am a Student.
Anonymous: and Brainly Benefactor
Anonymous: can you add me on wtsapp
siddhartharao77: Kindly correct your answer... Its wrong
Answered by siddhartharao77
0
Given Sin A = 3/4.

We know that Sin^2A + cos^2A = 1

                         (3/4)^2 + cos^2A = 1

                         9/16 + cos^2A = 1

                         cos^2A = 1 - 9/16

                         cos^2A = 7/16

                         cos A = \sqrt{ \frac{7}{16} }

                         cos A = \frac{ \sqrt{7} }{4}



Now,


TanA = sinA/cosA

           = \frac{  \frac{3}{4} }{ \frac{ \sqrt{7} }{4} }

           =  \frac{{3} }{ \sqrt{7} }



Hope this helps!
Similar questions