NO SPAMS answer this pls
Answers
Question 1 :-
Factorise 16a⁴ + 81b⁴ + 36a²b²
(4a²)² + (9b²)² + (6ab)²
By using identity, (a+b)² = a² + 2ab + b²
(4a²+9b²) = 16a⁴ + 81b⁴ + 72a²b²
Therefore, the question can be expressed as :
(4a²)² + (9b)² + 72a²b² - 36a²b²
(4a²+9b²)² - 36a²b²
Identity to use : a²-b² = (a+b)(a-b)
(4a²+9b²)² - (6ab)²
[(4a²+9b²)+6ab][(4a²+9b²)-6ab]
Question 2 :-
By using splitting the middle term method,
28m² + 25mn - 8n²
28m² - 7mn + 32mn + 8n²
7m(4m - n) + 8n(4m - n)
(4m - n)(7m + 8n)
Some more identities :-
(a+b)² = a² + 2ab + b²
(a-b)² = a² - 2ab + b²
a²-b² = (a-b)(a+b)
(a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca
(x+a)(x+b) = x² + x(a+b) + ab
(a+b)³ = a³ + 3a²b + 3ab² + b³
a³+b³ = (a+b)(a²-ab+b²)
(a-b)³ = a³ - 3a²b + 3ab² - b³
a³-b³ = (a-b)(a²+ab+b²)
a³+b³+c³ - 3abc = (a+b+c)(a²+b²+c² - ab - bc - ca)
Conditional identity:
if a+b+c = 0,
a³+b³+c³ = 3abc