Math, asked by inforajashree, 1 year ago

No spams please. Please answer this fast.

Attachments:

Answers

Answered by Anonymous
12

Solution

(I)

  • given=>z=2-3i
  • now....

 \frac{1 - 2z}{z - 3}  \\  =  \frac{1 - 4 + 6i}{2 - 3i - 3}  \\  = \frac{6i -  3}{ - 3i - 1}  \\  =  \frac{3 - 6i}{3i + 1}  \\  =  \frac{(3 - 6i)(3i - 1)}{(3i + 1)(3i - 1)}  \\  =  \frac{9i - 3 + 18 + 6i}{ - 9 - 1}  \\  =  \frac{15i + 15}{ - 10}  \\  =  -  \frac{3}{2}  + (  - \frac{3}{2} )i

(ii)

 \frac{2  +  i}{2 - 3i}  = a + ib \\  =  >  \frac{(2 + i)(2 + 3i)}{(2 - 3i)(2 + 3i)}  = a + ib \\  =  >  \frac{4 + 6i + 2i  - 3}{4 + 9}  = a + ib \\  =  >  \frac{1 + 8i}{13}  = a + ib \\  =  >  \frac{1}{13}  +  \frac{8}{13} i = a +i b \\  compairing \: both \: sides \: we \: get...... \\ a =  \frac{1}{13}  \\ b =  \frac{8}{13}

Hope this help you........be happy....xd

Answered by Anonymous
71

\huge\mathfrak{Hey\:mate}

1 st case →

Given that z = 2 -3i

And \huge\frac{1-2z}{z-3}

Putting value of z here :-

 \frac{1 - 2(2 - 3i)}{2 - 3i - 3}  \\

 \frac{ - 3 + 6i}{ - 1 - 3i}  \\

Now multiplying and dividing by conjugate of-1-3i :-

 \frac{ - 3 + 6i}{ - 1 - 3i}  \times ( \frac{ - 1 + 3i}{ - 1 + 3i} ) \\

 \frac{3 - 9i -6i - 18}{10 } \\

 \frac{15 - 15i}{10}  \\

 \frac{3 - 3i}{2}  \\

 \frac{3}{2}  -  \frac{3i}{2}  = a + ib \\

2nd case →

Given that \huge\frac{2+i}{2-3i} = A +iB

Now multiplying and dividing by conjugate of 2-3i :-

 \frac{2 + i}{2 - 3i}  \times ( \frac{2 + 3i}{2 + 3i} ) \\

 \frac{1 + 8i}{13 }  = a + ib \\

By comparing both sides we got :-

a =  \frac{1}{13}  \\

b =  \frac{8}{13}  \\

Similar questions