Math, asked by inforajashree, 1 year ago

No spams please. Please answer this fast.

Attachments:

Answers

Answered by rishu6845
2

Answer:

plzzz give me brainliest ans and plzzzz follow me please

Attachments:
Answered by anu24239
10

\huge\mathfrak\red{Answer}

 {x}^{3}  - 1 = 0 \\  {x}^{3}   -   {(1)}^{3}  = 0 \\ (x - 1)( {x}^{2}   +  1 + x) = 0 \\  \\ from \: here \: we \: get \\ x = 1 \\  \\  {x}^{2}  +  1 + x = 0 \\ a = 1 \\ b = 1 \\ c = 1 \\  \\ x =  \frac{ - b +  \sqrt{ {b}^{2} - 4ac } }{2a}  \: or \:  \frac{ - b -  \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\ x =  \frac{ - 1 +   \sqrt{{(1)}^{2} - 4(1)(1)} }{2(1)}  \\  \\ x =  \frac{ - 1 +  \sqrt{ - 3} }{2}   \: or \:  \frac{ - 1 -  \sqrt{ - 3} }{2}  \\  \\ x =  \frac{ - 1 + i \sqrt{3} }{2}  \: or \:  \frac{ - 1 - i \sqrt{3} }{2}  \\  \\ let \: w =  \frac{ - 1 + i \sqrt{3} }{2}  \\ squaring \: on \: both \: side \\  \\  {w}^{2}  =  \frac{ {( - 1 +  i\sqrt{3}) }^{2} }{4}  =  \frac{ - 1 - i \sqrt{3} }{2}  \\  \\ 1 + w +  {w}^{2}  \\ 1 +  \frac{ - 1 + i \sqrt{3} }{2}  + ( \frac{ - 1 - i \sqrt{3} }{2} ) \\  \\  \\ 1 + ( \frac{ - 1 + i \sqrt{3} - 1 - i \sqrt{3}  }{2}  \\  \\ 1 - 1 = 0

Similar questions