Math, asked by inforajashree, 10 months ago

No spams please. Please answer this fast.

Attachments:

Answers

Answered by sandy1816
1

Step-by-step explanation:

(i)given (a+ib)(c+id)=x+iy.......(1)

conjugate of eqn (1)

(a-ib)(c-id)=(x-iy)

(ii)(a+ib)(c+id)=x+iy.......(1)

conjugate of eqn (1)

(a-ib)(c-id)=(x-iy)......(2)

Now,(1)×(2)

(a+ib)(c+id)(a-ib)(c-id)=(x+iy)(x-iy)

=(ac+iad+ibc-bd)(ac-iad-ibc-bd)=x²+y²

={(ac-bd)+i (ad+bc)} {(ac-bd)-i(ad+bd)=

x²+y²

=(ac-bd)²-{i (ad+bc)}²=x²+y²

=(ac-bd)²+(ad+bc)²=x²+y²

thankyou

Answered by anu24239
4

(a + ib)(c + id) = x + iy \\  ac + ibc + iad + ( {i}^{2})bd = x + iy \\ ac - bd + i(bc + ad) = x + iy   \\  \\ by \: comparing \: we \: get \\  \\ x = ac - bd.....eq(1) \\ y = bc + ad ......eq(2)\\  \\ 1. \\  \\ (a - ib)(c - id) = x - iy \\  \\ put \: the \: upper \: value \: here... \\  \\ (a - bi)(c - id) = ac - bd - i(bc + ad) \\  \\ ac - ibc - iad +  ({i})^{2} bd = ac - bd - i(bc + ad) \\  \\ ac  - bd - i(bc + ad) = ac - bd - i(bc + ad) \\  lhs = rhs..... |hence \: proved|  \\  \\ (2) \\  \\  from \: eq(1) \: and \:eq (2) \\  \\ x + iy = (ac - bd) + i(bc - ad) \\  \\  |x + iy|  =  \sqrt{ {(ac - bd)}^{2} +  {(bc - ad)}^{2}  }  \\  \\  { |x + iy| }^{2}  =  {(ac - bd)}^{2}  +  {(bc - ad)}^{2}  \\  \\  |x + iy|  =  \sqrt{ {x}^{2} +  {y}^{2}  } .....from \: here \\ we \: get \\  \\  {x}^{2}  +  {y}^{2}  =  {(ac - bd)}^{2}   +  {(bc - ad)}^{2}  \\  \\ |hence \: proved|

#BTSKINGDOM

Similar questions