Math, asked by Anonymous, 19 days ago

Nonsense/No solution = report​

Attachments:

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given cubic polynomial is

\rm \:  {3x}^{3} +  {4x}^{2} - x - 2

Let assume that

\rm \: f(x) =  {3x}^{3} +  {4x}^{2} - x - 2

Now, we have to find the zero of this cubic polynomial using hit and trial method.

Let assume that x = - 1

\rm \: f( - 1) =  - 3 + 4 + 1 - 2

\rm\implies \:f( - 1) = 0

We know

Factor theorem states that if a polynomial if more than 1 degree f(x) is such that f (a) = 0, then x - a, is factor of f(x).

So, By factor theorem,

\rm\implies \:x + 1 \: is \: a \: factor \: of \: f(x)

So, by using Synthetic Division Method, we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{{\sf{\:\: \:\:}}}\\ {\underline{\sf{ - 1}}}& {\sf{\: 3 \:   \:  \:  \:  \:  4 \:  \:  \:  \:  \:  - 1  \:  \:  \:  \:  - 2 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:   \:  - 3 \:  \:  \:  \: - 1\:  \:  \:  \:   \:  2\: \:  \: \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  3\:  \:  \:  1\:  \:  \:   - 2  \:  \:  \:  [ \: 0\: \: \:  \:  \:  \:    \:\:}}  \\  {\sf{\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered} \\

Now, By Division Algorithm, we have

Dividend = Divisor × Quotient + Remainder

So,

\rm \:  {3x}^{3} +  {4x}^{2} - x - 2

\rm \:  =  \: (x + 1)( {3x}^{2} + x - 2)

\rm \:  =  \: (x + 1)( {3x}^{2} +3 x - 2x - 2)

\rm \:  =  \: (x + 1)\bigg[3x(x + 1) - 2(x + 1)\bigg]

\rm \:  = \rm \: (x + 1)(x + 1)(3x - 2)

Hence,

\bf \: f(x) =  {3x}^{3} +  {4x}^{2} - x - 2 = (x + 1)(x + 1)(3x - 2)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Verification of Synthetic Division by Long Division

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: 3{x}^{2} + x - 2\:\:}}}\\ {\underline{\sf{x + 1}}}& {\sf{\: 3{x}^{3} + {4x}^{2} - x  - 2 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \: - 3{x}^{3}  -  3 {x}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:{x}^{2} - x  - 2 \:  \:  \:  \:   \:  \:  \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  \:  \:  \:  \: - {x}^{2}  - x   \:  \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 2x - 2  \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:2x + 2\:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 0\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered} \\

Similar questions