normal to the surface xy^2+xy+2=0 is
Answers
Answered by
0
Answer:
(a) f = xyz + 3x
2 − 4 x0 = (1, 1, 1)
∇f = (yz + 6x, xz, xy) ∇f|x0 = (7, 1, 1) n = ± √
1
51 (7, 1, 1)
(b) f = 3yz
2 + 2x
2 − 4xy2 − 3 x0 = (0, 1, 1)
∇f = (4x − 4y
2
, 3z
2 − 4x, 6yz) ∇f|x0 = (−4, 3, 6)
Equation of tangent plane is (x − x0) · n = 0
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✟•
✟✟
✟✙
✻
n
x − x0
−4(x − 0) + 3(y − 1) + 6(z − 1) = 0
− 4x + 3y + 6z = 9
(c) f1 = 2x
2 + y
2 + z
2 − 4 f2 = x
2 + y
2 − z − 1 x0 = (1, 1, 1)
∇f1 = (4x, 2y, 2z) n1 = √
1
24 (4, 2, 2) = √
1
6
(2, 1, 1)
∇f2 = (2x, 2y, −z) n2 =
1
3
(4, 2, 2)
Angle between surfaces = angle between normals = θ
cos θ = n1 · n2 = √
1
6
1
3
5
θ = cos−1
³
5
3
√
6
´
Similar questions