Math, asked by glprasad22, 1 year ago

(Not drawn to scale)
In right triangle ABC shown, AD = AB and
AE AC. If the area of triangle ADE is 8,
what is the area of triangle ABC?
(A) 10
(B) 15
(C) 20
(D) 24
(E) 30

Attachments:

Answers

Answered by ihrishi
7

Step-by-step explanation:

Given: \\ AD =  \frac{4}{5} AB \\  \implies \: AB = \frac{5}{4} AD \\AE  =  \frac{1}{3} AC  \\  \implies \: AC = 3AE  \\  Now,  \\ A( \triangle ABC ) =  \frac{1}{2}  \times AB\times AC \\  =   \frac{1}{2}  \times \frac{5}{4} AD\times 3AE \\  =  (\frac{5}{4}  \times 3)( \frac{1}{2}  \times AD \times AE) \\  =  \frac{15}{4} \times A( \triangle ADE ) \\ \{ \because A(\triangle ADE)=8 \:which \:is \:given\} \\  = \frac{15}{4} \times 8 \\  = 15 \times 2 \\  = 30 \: square \: units \\ thus \\ A( \triangle ABC ) = 30 \: square \: units \\ so \: option \: E \: is \: the \: correct \: answer. \\ \\\\ A( \triangle ABC )\: means\: Area\:of\:triangle\:ABC.

Similar questions