Math, asked by brindhakishore0608, 10 months ago

Note: ● Not By Cross Multiplication Method
●Do By Elimination method or
Substitution method​

Attachments:

Answers

Answered by krishna02299
1

Step-by-step explanation:

a. \color{\red}{6x+3y=6xy & 2x+4y= 5xy}

6x + 3y = 6xy ....(1)

2x +4y = 5xy ......(2)

From Eq 1

Taking xy From Multiply To Devide

 \frac{6x + 3y }{xy} =6

Breaking xy To Both Variable

 \frac{6x}{xy}  +  \frac{3x}{xy}  = 6

We Cut x With x and Y with y

so, These eq Will Be Written As

 \frac{6}{y}  +  \frac{3}{x}  = 6 \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: ......(3)

From Eq 2

2x + 4y = 5xy

Same Process

 \frac{2x + 4y}{xy}  = 5

these Eq Will Be Written As

 \frac{2x}{xy}  +  \frac{4x}{xy}  = 5

Cut x With x And y with y

so,

 \frac{2}{y}  +  \frac{4}{x}  = 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: .....(4)

From Equation 3 And 4

6/y + 3/x = 6

& 2/y + 4/x = 5

Multiply By 3 In Equation 4

3 (2/y + 4/x = 5 )

6/y + 12/x = 15 ...(5)

By Elmination Method

From Equation 3 And 5

6/y +3/x = 6

6/y + 12/x = 15

- - -

——————————

-9/x = - 9

——————————

- 9/x = -9

x = -9 / -9

\bold{\boxed{x = 1}}

Putting The Value Of x In Equation 1

6 × 1 + 3y = 6 × 1 ×y

6 + 3y = 6y

6 = 6y - 3y

6 = 3y

y = 6/3

\bold{\boxed{y = 2}}

<marquee>x = 1 </marquee>

<marquee>y = 2</marquee>

B). \color{red}{10/x+y <strong>+</strong><strong> </strong>2/ x - y = 4}

\color{red}{15/x + y <strong>-</strong> 5/x-y =-2}

Answer

let \:  \:  \frac{1}{x + y}  = a \:

And

let \:  \frac{1}{x - y}  \:  = b

So

10a + 2b =4 ......(1)

15a - 5b = -2 ......(2)

Multiply By 5 In Equation 1 And 2 In Eq 2

ie,

(10a + 2b = 4) × 5

(15a - 5b = -2 )×2

By Elmination Method

50a + 10b = 20

30b - 10b = -4

+

—————————

80b = 16

—————————

b \:  =  \frac{16}{80}

so

b \:  =  \frac{1}{5}

Putting The Value Of b in Equation 2

i•e

15a + 5 \times  \frac{1}{5}  =  - 2

15a + 1 = -2

15a = -2-1

15a = -3

a =  \frac{ - 3}{15}

i•e

a =  \frac{1}{3}

But

 \frac{1}{x + y}  = a

 \frac{1}{x + y}  =  \frac{1}{3}

So ,

x + y = 3 ......(3)

Again

 \frac{1}{x - y}  = b

\frac{1}{x - y}  =  \frac{1}{5}

so,

x - y = 5 ......(4)

NOW,

by Elmination Method

From Equation 3 And 4

x + y = 3

x - y = 5

+

——————

2x = 8

x = 8/2

\bold{\boxed{x=4}}

Putting The Value Of x in Equation 3

4+ y =3

y = 3-4

\bold{\boxed{y= -1 }}

C),

let \frac{1}{3x + y}  =  a

And

let \:  \frac{1}{3x - y}  = b

Putting These Value

ie,

a + b \:  =  \frac{3}{4}

Taking 4 From Devide To Multiply

ie,

4( a+b ) = 3

4a + 4b = 3 ....(1)

Taking Another eq

 \frac{a}{2}  -  \frac{b}{2} =   \frac{ - 1}{8}

these Eq Can Be Written As

 \frac{a  -  b}{2}  =   \frac{ - 1}{8}

a  -  b =  \frac{ - 1}{8}  \times 2

a  -  b =  \frac{ - 1}{4}

4a  -  4b =  - 1 \:  \:  \:  \:  \:  \:  \:  \:  \: ....(2)

By Elmination Method

From Equation 1 And 2

4a + 4b =3

4a - 4b = -1

+

8a = 2

a = 2/8

a= 1/4

Putting The Value Of a In Eq 1

4 \times  \frac{1}{4}  + 4b = 3

1 + 4b = 3

4b = 3-1

4b = 2

b = 2/4

b = 1/2

Now,

 \frac{1}{3x + y}  = a

 \frac{1}{3x + y}  =  \frac{1}{4}

4 = 3x + y ....( 3)

Again

 \frac{1}{3x - y}  = b

 \frac{1}{3x - y}  =  \frac{1}{2}

2 = 3x-y ....( 4)

By Elmination Method

From Equation 3 And 4

3x + y = 4

3x - y = 2

+

6x = 6

____________

x = 6/6

\bold{\boxed{x=1}}

Putting The Value Of x In Eq 3

3 × 1 + y = 4

3 + y = 4

y = 4-3

\bold{\boxed{y = 1}

&lt;marquee&gt; Answer &lt;/marquee&gt;

Sorry Ye App Ke Update Ka Bug he

Similar questions