Science, asked by nikki1397, 1 year ago

notes{derivations } on combination of errors


dawinder35: hlw cute girl

Answers

Answered by NidhraNair
16
hello...


please refer the above attachment....


thank you


Attachments:

rudy69: hello
NidhraNair: ur name?
NidhraNair: thanks ☺ ♥
maskearyan: hiiii
maskearyan: nidhra nair
Answered by Anonymous
7
Hey mate ^_^

=======
Answer:
=======

Combination of Errors:-

_________________________
(a) Error of a sum or a difference:
_________________________

When two quantities are added or subtracted, the absolute error in the final result is the sum of the absolute errors in the individual quantities.

Z = A + B

We have by addition, 

Z ± ΔZ = (A ± ΔA) + (B ± ΔB).

The maximum possible error in Z

ΔZ = ΔA + ΔB

For the difference Z = A – B, we have

Z ± Δ Z = (A ± ΔA) – (B ± ΔB) = (A – B) ± ΔA ± ΔB

or, ± ΔZ = ± ΔA ± ΔB

The maximum value of the error ΔZ is again ΔA + ΔB.

___________________________
(b) Error of a product or a quotient:
___________________________

When two quantities are multiplied or divided, the relative error in the result is the sum of the relative errors in the multipliers.

Suppose Z = AB and the measured values of A and B are A ± ΔA and B ± ΔB. Then

Z ± ΔZ = (A ± ΔA) (B ± ΔB) = AB ± B ΔA ± A ΔB ± ΔA ΔB.

Dividing LHS by Z and RHS by AB we have,

1 ± (ΔZ/Z) = 1 ± (ΔA/A) ± (ΔB/B) ± (ΔA/A)(ΔB/B).

Since ΔA and ΔB are small, we shall ignore their product.

Hence the maximum relative error

ΔZ/ Z = (ΔA/A) + (ΔB/B).

____________________________
(c) Error in case of a measured quantity raised to a power
____________________________

The relative error in a physical quantity raised to the power k is the k times the relative error in the individual quantity.

Suppose Z = A^2,

Then,

ΔZ/Z = (ΔA/A) + (ΔA/A) = 2 (ΔA/A).

Hence, the relative error in A^2 is two times the error in A.

In general, if Z = (Ap Bq)/Cr

Then,

ΔZ/Z = p (ΔA/A) + q (ΔB/B) + r (ΔC/C).


#Be Brainly❤️
Similar questions