Now Answer it fast....
Attachments:
Answers
Answered by
1
Answer :
Option (1) - 0.
Explanation :
Given x + 1/x = 5
On Squaring both sides, we get
(x + 1/x)^2 = (5)^2
We know that (a+b)^2 = a^2 + b^2 + 2ab
Where a = x, b = 1/x.
Then (x + 1/x)^2 = (5)^2
x^2 + 1/x^2 + 2 * x * 1/x = 25
x^2 + 1/x^2 + 2 = 25
x^2 + 1/x^2 = 25 - 2
x^2 + 1/x^2 = 23. -------------- (1)
Given x + 1/x = 5
On cubing both sides, we get
(x + 1/x)^3 = (5)^3
We know that (a+b)^3 = a^3 + b^3 + 2ab(a+b)
(x + 1/x)^3 = (5)^3
x^3 + 1/x^3 + 2x * 1/x(x + 1/x) = 125
x^3 + 1/x^3 + 2(5) = 125
x^3 + 1/x^3 = 125 - 10
x^3 + 1/x^3 = 110 ------------ (2)
Now, (x^3 + 1/x^3) - 5(x^2 + 1/x^2) + (x + 1/x)
= 110 - 5(23) + 5
= 110 - 115 + 5
= -5 + 5
= 0.
Hope this helps!
Option (1) - 0.
Explanation :
Given x + 1/x = 5
On Squaring both sides, we get
(x + 1/x)^2 = (5)^2
We know that (a+b)^2 = a^2 + b^2 + 2ab
Where a = x, b = 1/x.
Then (x + 1/x)^2 = (5)^2
x^2 + 1/x^2 + 2 * x * 1/x = 25
x^2 + 1/x^2 + 2 = 25
x^2 + 1/x^2 = 25 - 2
x^2 + 1/x^2 = 23. -------------- (1)
Given x + 1/x = 5
On cubing both sides, we get
(x + 1/x)^3 = (5)^3
We know that (a+b)^3 = a^3 + b^3 + 2ab(a+b)
(x + 1/x)^3 = (5)^3
x^3 + 1/x^3 + 2x * 1/x(x + 1/x) = 125
x^3 + 1/x^3 + 2(5) = 125
x^3 + 1/x^3 = 125 - 10
x^3 + 1/x^3 = 110 ------------ (2)
Now, (x^3 + 1/x^3) - 5(x^2 + 1/x^2) + (x + 1/x)
= 110 - 5(23) + 5
= 110 - 115 + 5
= -5 + 5
= 0.
Hope this helps!
alvincarter:
siddhart your ans is best
Similar questions