Math, asked by Samiksha555, 5 days ago

now, give me this answer..
and don't see only..
give me the correct answer ​

Attachments:

Answers

Answered by arjunsahu8d11
1

Answer:

Mark me as brainliest for correct answer

Attachments:
Answered by Syamkumarr
1

Answer:

tan x =\frac{5}{12}   cos y =\frac{4}{5}   sin y =\frac{3}{5}

Step-by-step explanation:

Given that in ΔABC, sides BC= 21,  AC= 13

            if  ACD is triangle, DC = 5,  AC=13

tan x = \frac{opposite side }{adjacent side} =  \frac{DC}{AD}  ( opposite and adjacent side of x)

cos y = \frac{adjacent side}{hypotenuse} = \frac{BD}{AB}  ( adjacent and hypotenuse of y )

sin y = \frac{opposite side }{hypotenuse} =  \frac{AD}{AB }( opposite and hypotenuse of y )

  now we need to find out AB, AD  to calculate values of above  

 angle at D is a right angle (90°)

 therefore Δ ADC , Δ ABD are right angle triangles

in a right angle triangle  hypotenuse^{2} = side^{2}  + side^{2}

     in   Δ ADC =   AC^{2} = AD^{2} + DC^{2}

                           13^{2} = AD^{2} + 5^{2}

                           169 = AD^{2}+ 25

                           AD^{2}  = 169-25= 144 =12^{2}

      AD = 12

   in  Δ ABD =  AB^{2} = AD^{2} +BD^{2}

                      AB^{2} =  12^{2} +16^{2}   ( BD =BC -DC = 21-5=16)

                      AB^{2} = 144+ 256  = 400 = 20^{2}

   AB= 20    

  tan x = \frac{DC}{AD} = 5 / 12

  cos y =\frac{BD}{AB} =16 / 20  = 4/5

  sin y =\frac{AD }{AB} = 12/ 20 = 3/5              

 

Similar questions