Math, asked by Googly12345, 1 year ago

np5 = 20.np3 then what will be the value of n?

Answers

Answered by wifilethbridge
17

Answer:

n=8

Step-by-step explanation:

Formula of permutation : ^nP_r=\frac{n!}{(n-r)!}

We are given that ^nP_5 = 20 \times^nP_3

So, Using formula :

\frac{n!}{(n-5)!}= 20 \times\frac{n!}{(n-3)!}

\frac{n \times (n-1) \times (n-2) \times (n-3) \times (n-4) \times (n-5)!}{(n-5)!}= 20 \times \frac{n \times (n-1) \times (n-2) \times (n-3)!}{(n-3)!}

 (n-3) \times (n-4) = 20

 n \times (n-4) -3 \times (n-4) = 20

 n^2-4n -3n +12 -20 =0

 n^2-7n -8 =0

 n^2+n-8n-8 =0

 n(n+1)-8(n+1) =0

 (n+1)(n-8) =0

n=-1,8

Since n cannot be negative

So, n = 8

Similar questions