Math, asked by sarveshthakre7856, 4 months ago

nth derivative of y =sin2x.cos3x​

Answers

Answered by krishnaanandsynergy
0

Answer:

We can find nth derivative of y=sin^2x.cos^3x using trigonometric formula.

Answer:  y= \frac{1}{16} (2cos(\frac{n\pi }{2} +x)-5^n.cos(\frac{n\pi }{2} +5x)-3^n.cos(\frac{n\pi }{2} +3x))

Step-by-step explanation:

Let we consider the given question,

                            y=sin^2x.cos^3x

Trigonometric formula for sin^2 \theta = \frac{(1-cos2\theta)}{2} and cos^3\theta=\frac{(cos3\theta+3cos\theta)}{4}. Now apply this formula in the above equation.

     y=sin^2x.cos^3x = \frac{(1-cos2x)}{2}.\frac{(cos3x+3cosx)}{4}

                               = \frac{1}{8} (1-cos2x).(cos3x+3cosx)

                               = \frac{1}{8} (cos3x+3cosx-cos2xcos3x-3cos2xcosx)

Now apply cos A cos B formula in the above equation.

               cos A cos B=\frac{1}{2}[cos(A+B)cos(A-B)]

So that, the equation is,           = \frac{1}{8} (cos3x+3cosx-\frac{1}{2} [cos(3x+2x)+cos(3x-2x)]-3*\frac{1}{2} [cos(2x+x)+cos(2x-x)]

  = \frac{1}{8} (cos3x+3cosx-\frac{1}{2} [cos(5x)+cos(x)]-3*\frac{1}{2} [cos(3x)+cos(x)]

  = \frac{1}{8} \frac{(2cos3x+3*2cosx-cos5x-cosx-3cos3x-3cosx)}{2}

  = \frac{1}{16} (2cos3x+6cosx-cos5x-cosx-3cos3x-3cosx)

y= \frac{1}{16} (2cosx-cos5x-cos3x)  ------------------(1)

nth derivative of cos ax=a^ n .cos(\frac{n\pi }{2} +ax)

From the above equation,

        cos x=cos(\frac{n\pi }{2} +x)  => (a = 1)

       cos 5x=5^n.cos(\frac{n\pi }{2} +5x)  => (a = 5)

       cos 3x=3^n.cos(\frac{n\pi }{2} +3x) => (a = 3)

equation(1) can be written as,

Answer: y= \frac{1}{16} (2cos(\frac{n\pi }{2} +x)-5^n.cos(\frac{n\pi }{2} +5x)-3^n.cos(\frac{n\pi }{2} +3x))

       

                                             

Similar questions