nth differentiation cos^4x
Answers
Answered by
0
Step-by-step explanation:
Correct option is
D
2
n−1
cos(
2
nπ
+2x)+2
2n−3
cos(
2
nπ
+4x)
We have y=cos
4
x
Then y=
4
1
(2cos
2
x)
2
y=
4
1
(1+cos2x)
2
y=
4
1
(1+cos
2
2x+2cos2x)
y=
8
1
(1+cos4x)+
2
1
cos2x+
4
1
y
1
=
8
1
(−4sin4x)+
2
1
(−2sin2x)
y
1
=
8
1
(−4cos(
2
π
+4x))+
2
1
(2cos(
2
π
+2x))
y
2
=
8
1
(−16cos4x)+(
2
−1
)(4cos2x)
y
2
=
8
1
(−16cos4x+π)+(
2
1
)(2
2
cos(π+2x))
y
n
=2
n−1
cos(
2
nπ
+2x)+2
2n−3
cos(
2
nπ
+4x)
Similar questions