Math, asked by triangle6853, 1 year ago

nth differentiation of x3 cosx

Answers

Answered by smd506647
0

Answer:


Step-by-step explanation:

-3sinx

Answered by pulakmath007
4

SOLUTION

TO DETERMINE

The nth derivative of x³ cos x

EVALUATION

Here the given function is

f(x) = x³ cos x

Let u = cos x and v = x³

Then

 \displaystyle \sf{u_n =  \cos  \bigg( \frac{n\pi}{2} + x  \bigg)}

 \sf{v_1 = 3 {x}^{2} }

 \sf{v_2 = 6x }

 \sf{v_3 = 6 }

 \sf{v_n= 0 \:  \:  \: for \:  \: n > 3 }

Thus the function can be rewritten as

f(x) = uv

Differentiating both sides n times with respect to x using Leibnitz theorem we get

 \sf{ {f}^{n}(x) }

 \sf{ = (uv)_n}

 \displaystyle \sf{ =  {}^{n} C_0u_{n}v +{}^{n} C_1u_{n - 1}v_1  +{}^{n} C_2u_{n - 2}v_2 +{}^{n} C_3u_{n}v_3 +  {}^{n} C_4u_{n - 4}v_4 + .. \: .. }

 \displaystyle \sf =  {}^{n} C_0\cos  \bigg( \frac{n\pi}{2} + x  \bigg) {x}^{3}  +{}^{n} C_1\cos  \bigg( \frac{(n - 1)\pi}{2} + x  \bigg)3 {x}^{2} +{}^{n} C_2\cos  \bigg( \frac{(n - 2)\pi}{2} + x  \bigg)6x  +{}^{n} C_3\cos  \bigg( \frac{(n - 3)\pi}{2} + x  \bigg)6  +{}^{n} C_4\cos  \bigg( \frac{(n - 4)\pi}{2} + x  \bigg).0   + .. \: ..

 \displaystyle \sf =  {}^{n} C_0\cos  \bigg( \frac{n\pi}{2} + x  \bigg) {x}^{3}  +{}^{n} C_1\cos  \bigg( \frac{(n - 1)\pi}{2} + x  \bigg)3 {x}^{2} +{}^{n} C_2\cos  \bigg( \frac{(n - 2)\pi}{2} + x  \bigg)6x  +{}^{n} C_3\cos  \bigg( \frac{(n - 3)\pi}{2} + x  \bigg)6

 \displaystyle \sf =  {x}^{3} \cos  \bigg( \frac{n\pi}{2} + x  \bigg) +3n {x}^{2} \cos  \bigg( \frac{(n - 1)\pi}{2} + x  \bigg) +3n(n - 1)x\cos  \bigg( \frac{(n - 2)\pi}{2} + x  \bigg) +n(n - 1)(n - 2)\cos  \bigg( \frac{(n - 3)\pi}{2} + x  \bigg)

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=u^2-v^2,y=2uv find the jacobian of x, y with respect to u and v

https://brainly.in/question/34361788

2. given u=yzx , v= zxy, w =xyz then the value of d(u,v,w)/d(x,y,z) is (a) 0 (b) 1 (c) 2 (d) 4

https://brainly.in/question/34435016

Similar questions