NTSE question try to solve it
Answers
Answer:
2
Step-by-step explanation:
1/(1+√2)*(√2-1)/(√2-1) + 1/(√2+√3)*(√3-√2)/(√3-√2) + .....1/(√8+√9)*(√9-√8)/(√9-√8)
rationalising each term by multiplying them,with its conjugate,
we get,
√2-1 + √3-√2.......+√8-√7+√9-√8
-1+√9
2
no thanks
brainlist the second answer!!!
Question:
Find the value of the series;
1/(1+√2) + 1/(√2+√3) + 1/(√3+√4)
+ 1/(√4+√5) + 1/(√5+√6) + 1/(√6+√7)
+ 1/(√7+√8) + 1/(√8-√9)
Answer:
The value of the given series is 2 .
Solution:
Let , the given series be;
S = 1/(1+√2) + 1/(√2+√3) + 1/(√3+√4)
+ 1/(√4+√5) + 1/(√5+√6) + 1/(√6+√7)
+ 1/(√7+√8) + 1/(√8-√9)
Now,
Rationalizing the denominators of each terms of the series, we get;
=> S = (1-√2)/(-1) + (√2-√3)/(-1)
+ (√3-√4)/(-1) + (√4-√5)/(-1)
+ (√5-√6)/(-1) + (√6-√7)/(-1)
+ (√7-√8)/(-1) + (√8-√9)/(-1)
=> S = -1 + √2 - √2 + √3 - √3 + √4 - √4
+ √5 - √5 + √6 - √6 + √7 - √7
+ √8 - √8 + √9
=> S = -1 + √9
=> S = -1 + 3
=> S = 2
Hence, the required value of the given series is 2 .