Math, asked by shravandhaduti2001, 11 months ago

number consisting of two digits is four times the sum of its digits and if 27 be added to it the
s are reversed. the number is

Answers

Answered by EliteSoul
426

\sf\purple{Answer:-}

{\underline{\boxed{\sf\green{Number = 36 }}}}

{\underline{\underline{\bold\blue{Step-by-step-explanation:-}}}}

Let the one's digit be x and the ten's digit be y.

\therefore\sf\blue{Number \:  formed = x + 10y}

{\underline{\underline{\bold{According\: to \: question :-}}}}

1st case:-

\hookrightarrow\sf x + 10y = 4(x + y) \\\\\hookrightarrow\sf x + 10y = 4x + 4y \\\\\hookrightarrow\sf x - 4x = 4y - 10y \\\\\hookrightarrow\sf -3x = - 6y  \\\\\hookrightarrow\sf x =\dfrac{\cancel{-6}y}{\cancel{-3}}\\\\\hookrightarrow{\boxed{\sf\green{x = 2y ..........(i)}}}

\rule{200}{1}

2nd case:-

\hookrightarrow\sf x + 10y + 27 = 10x + y \\\\\hookrightarrow\sf x - 10x + 10y - y = -27 \\\\\hookrightarrow\sf -9x + 9y = -27 \\\\\hookrightarrow\sf -(9x - 9y ) = -27 \\\\\hookrightarrow\sf 9x - 9y = 27 \\\\\hookrightarrow\sf 9(x - y) = 27 \\\\\hookrightarrow\sf x - y =\cancel{\dfrac{27}{9}} \\\\\hookrightarrow\sf x - y = 3 \\\\\hookrightarrow{\boxed{\sf\green{x = y + 3..........(ii)}}}

Now from both (i) & (ii) we get :-

\hookrightarrow\sf y + 3 = 2y \\\\\hookrightarrow\sf y - 2y = -3 \\\\\hookrightarrow\sf -y = -3 \\\\\therefore{\boxed{\sf\green{y = 3}}}

Putting value of y in (i) :-

\hookrightarrow\sf x = 2 \times 3 \\\\\therefore{\boxed{\sf\blue{x = 6}}}

\rule{200}{1}

\sf Number \: formed = x + 10y \\\\\hookrightarrow\sf Number \: formed = 6 + 10 \times 3 \\\\\hookrightarrow\sf Number \: formed = 6 + 30 \\\\\hookrightarrow{\boxed{\sf\green{Number \: formed = 36}}}

{\underline{\boxed{\therefore{\sf\blue{Number \: formed = 36}}}}}


Anonymous: Awesome
Anonymous: Keep it up : )
Anonymous: Great !
Answered by Anonymous
423

\LARGE\textrm{\underline{\underline \green{Answer:}}}

\star \large\sf \purple{ Number \: is \: 36}

\Large\textrm{\underline{\underline \green{Step \: by \: step\: explanation:}}}

GivEn :

\large\sf{Number \: is- \:}

\large\sf{ \: \:Four \: times \: the \: sum \: of \: digits}

\large\sf{\: \:If \: 27 \: is \: added \: = \: Reversed \: number \: }

To FinD :

\large\sf{\: \: The \: Number}

SoluTion :

\star \normalsize\sf \pink{Let \: the \: one's \: place \: digit \: be \: x}

\star \normalsize\sf \pink{ Let \: the \: ten's \: place \: digit \: be \: y}

\star {\boxed{\sf \orange{Number \: = \: x \: + \: 10y}}}

\scriptsize\sf{\: \: \: \: \:  (Formula \: used \: = 10 × one's \: place \: digit \; number \: + \: ten's  \: place \: digit \: number)}

\large{\textrm{\underline{\underline{According \: to \: Question :-}}}}

\normalsize\sf \red{Case \: 1 :\:}

\large\sf\ x \: + \: 10y \: = \: 4(x \: + \: y )

\scriptsize\sf{ \: \: (Number \: is \: 4 \: times\: the \: sum \: of \: digits)}

\large\sf\ x \: + \: 10y \: = \: 4 x \: +  \: 4y

\large\sf\ 10y \: - \:  4y \: = \: 4x \: - \: x

\large\sf\ 6y \: = \:   3x

\large\sf\ x \: = \: \frac{6y}{3}

\scriptsize\sf{\: \: \: \: \: (Cancelling \: the \: values)}

{\boxed{\sf{x \: = \: 2y }}}

\scriptsize\sf{\: \: \: \: \:(Let \:  it \:  be \:  equation\: 1)}

 \rule{300}{2}

\normalsize\sf \red{Case \: 2: \:}

\large\sf\ x \: + \: 10y \: + \: 27 \: = \: 10x\: + \: y

\scriptsize\sf{\: \: (If \: 27 \: is \: added \: to \: number \: then \: it \: is \: equal \: to \: its \: reversed)}

\large\sf\ x \: + \: 10y \: - \: 10x \: - \: y \: = \: -27

\large\sf\ -9x \: + 9y \: = \: -27

\large\sf\ -(9x \: - \: 9y) \:  \: -(27)

\scriptsize\sf{ \: \: \: \:(Take \: negative \: sign \: common \: and \: then \: cancel \: both \: sides)}

\large\sf\ 9(x \: - \: y ) \: = \: 27

\large\sf\ x \: - \: y \: = \: \frac{27}{9}

\large\sf\ x \: - \: y \: = \: 3

\large\sf \ x \: = \: y \: + \: 3

{\boxed{\sf{ x \: = \: y \: + \: 3}}}

\scriptsize\sf{\: \: \: \: \: (let \: it \: be \:  second \: equation \:)}

 \rule{300}{2}

\normalsize\sf \red{ Solving  \: from \: equation \: 1 \: and \: 2, \: to \: find \: y :}

\large\sf\ 2y \: = \: y \: + \: 3

\large\sf\ 2y \: - y \: = 3

\large\sf\ y \: = \: 3

{\boxed{\sf \blue{ y \: = \: 3}}}

\normalsize\sf \red{Putting \: the \: value of \: y \: in \: equation \: 2 }

\large\sf\ x \: = \: y \: + \: 3

\large\sf\ x \: = \: 3 \: + \: 3 \: = \: 6

{\boxed{\sf \blue{x \: = \: 6}}}

\normalsize\sf \red{Now, \: find \: the \: number: \:}

\large\sf\ Number \: = \: x \: + \: 10y

\large\sf\ Number \: = 6 \: + \: 10 \times\ 3

\large\sf\ Number \: = \: 6 \: + \: 30 \: = \: 36

{\boxed{\sf \purple{Number \: = \: 36}}}


Anonymous: Awesome !
SnowySecret72: Great
Similar questions