Math, asked by sanjaymalohtra2929, 7 months ago

number of integers in the domain of function f(x) = log[x²]^4-|x|+log2(√x) where [.] represent greatest integer function ​

Answers

Answered by amansharma264
5

EXPLANATION.

 \sf :  \implies \: number \: of \: integer \: in \: the \: domain \: of \: function \\  \\  \sf :  \implies \: f(x) =  log_{ |x| {}^{2}  }(4 -  |x| )  +  log_{2}( \sqrt{x} ) \\  \\   \sf :  \implies \: x \: must \: be \: greater \: than \: 0 \:  = x > 0 \\  \\  \sf :  \implies \:  \sqrt{x}  > 0 \:  \implies \: x \:   \in \: (0, \infty ) \:  \:  \: .....(1)

 \sf :  \implies \: 4 -  |x|  > 0 \\  \\  \sf :  \implies \:  |x| < 4 \\  \\  \sf :  \implies \:  - 4 < x < 4 \\  \\  \sf :  \implies \: x \:  \in \: ( - 4,4) \:  \:  \: ......(2)

 \sf :  \implies \:  |x| {}^{2}  > 1 \\  \\  \sf :  \implies \: x > 1 \:  \:  \:  \: and \:  \:  \:  \: x < 1 \\  \\  \sf :  \implies \: x \:  \in \: ( -  \infty , - 1)  \cup \: (1, \infty ) \:  \:  \: ......(3)

 \sf :  \implies \: from \: equation \: (1)  \:  \: and \:  \: (2) \:  \: and \:  \: (3) \:  \: we \:  \: get \\  \\ \sf :  \implies \: (1) \cap(2) \cap(3) \\  \\ \sf :  \implies \: x \:  \in \: (1,4)  \:  =  \: answer

Similar questions