Math, asked by ainaakhtar000, 8 months ago

Number of integers lying in the range of
is
f(x)=
- 12x - 4
x2 - 2x - 2​

Attachments:

Answers

Answered by sharmamahender295
0

Answer:

mark me as brainlist. .

Answered by saounksh
4

ᴀɴsᴡᴇʀ

  • There are 13 integers in the range of f(x).

ᴇxᴘʟᴀɪɴᴀᴛɪᴏɴ

Here,

 \:\:\:\:\: f(x) = \frac{x^2 + 12x + 4} {x^2 + 2x + 2}

Put  f(x) = y for simplicity.

 \:\:\:\:\: y = \frac{x^2 + 12x + 4} {x^2 + 2x + 2}

 ✈︎\:\: y(x^2 + 2x + 2) = x^2 + 12x + 4

 ✈︎\:\: (y-1)x^2 + (2y-12)x

 \:\:\:\:\:\:\:\:\:+ (2y-4)= 0

 ✈︎\:\: (y-1)x^2 + 2(y-6)x

 \:\:\:\:\:\:\:\:\:+ 2(y-2)= 0

Since  x \in R \implies D ≥ 0

 ✈︎\:\: [2(y-6)]^2

 \:\:\:\:\:\:\:\:\:- 4(y-1).2(y-2) ≥ 0

 ✈︎\:\: 4(y-6)^2

\:\:\:\:\:\:\:\:\:- 8(y-1)(y-2) ≥ 0

 ✈︎\:\: (y^2 -12y + 36)

\:\:\:\:\:\:\:\:\: - 2(y^2 - 3y +2) ≥ 0

 ✈︎\:\: y^2 -12y + 36

 \:\:\:\:\:\:\:\:\:- 2y^2 + 6y - 4 ≥ 0

 ✈︎\:\: - y^2 -6y + 32 ≥ 0

 ✈︎\:\: y^2 + 6y - 32 ≤ 0

 ✈︎\:\: y^2 + 6y + 9 - 41 ≤ 0

 ✈︎\:\:(y+3)^2 - (\sqrt{41})^2 ≤ 0

 ✈︎\:\: [y+3 - \sqrt{41}][y+3 + \sqrt{41}]≤ 0

 ✈︎\:\: -3 - \sqrt{41} ≤ y ≤ -3 + \sqrt{41}

 ✈︎\:\: -3 - 6.4 ≤ y ≤ -3 + 6.4

 ✈︎\:\:\boxed{ - 9.4 ≤ y ≤ 3.4}

So, integers in range of f(x) are

 - 9, - 8, - 7, - 6, - 5, - 4,

 - 3, - 2, - 1, 0, 1, 2, 3.

Hence there are 13 integers in the range of f(x).

Similar questions