Physics, asked by mkaishasiddeeqa, 8 days ago

number of photoelectrons emitted increases with the increase in intensity and not with frequency.Explain why?​

Answers

Answered by arya006371
0

When light shines on a metal, electrons can be ejected from the surface of the metal in a phenomenon known as the photoelectric effect. This process is also often referred to as photoemission, and the electrons that are ejected from the metal are called photoelectrons. In terms of their behavior and their properties, photoelectrons are no different from other electrons. The prefix, photo-, simply tells us that the electrons have been ejected from a metal surface by incident light.

In this article, we will discuss how 19th century physicists attempted (but failed!) to explain the photoelectric effect using classical physics. This ultimately led to the development of the modern description of electromagnetic radiation, which has both wave-like and particle-like properties

To explain the photoelectric effect, 19th-century physicists theorized that the oscillating electric field of the incoming light wave was heating the electrons and causing them to vibrate, eventually freeing them from the metal surface. This hypothesis was based on the assumption that light traveled purely as a wave through space. (See this article for more information about the basic properties of light.) Scientists also believed that the energy of the light wave was proportional to its brightness, which is related to the wave's amplitude. In order to test their hypotheses, they performed experiments to look at the effect of light amplitude and frequency on the rate of electron ejection, as well as the kinetic energy of the photoelectrons.

Based on the classical description of light as a wave, they made the following predictions:

The kinetic energy of emitted photoelectrons should increase with the light amplitude.

The rate of electron emission, which is proportional to the measured electric current, should increase as the light frequency is increased.

To help us understand why they made these predictions, we can compare a light wave to a water wave. Imagine some beach balls sitting on a dock that extends out into the ocean. The dock represents a metal surface, the beach balls represent electrons, and the ocean waves represent light waves.

Similar questions