Math, asked by ankesh111, 4 months ago

Number of real solution(s) of x^2 - 4x+ 6 = 2 + root ( x-2) is /are ?

Answers

Answered by user0888
20

Sol.

Let \bold{f(x)=x^2-4x+6} and \bold{g(x)=2+\sqrt{x-2}}.

If two graph intersects, that means f(x)=g(x).

f(x)=g(x)

\Longleftrightarrow (x^2-4x+4)+2=2+\sqrt{x-2}

\Longleftrightarrow (x-2)^2=\sqrt{x-2}

Let \sqrt{x-2}=t and solve the equation.

t^4-t=0

\Longleftrightarrow t(t^3-1)=0

\Longleftrightarrow t(t-1)(t^2+t+1)=0

t=0,1 is the solution of the equation. So, they intersect twice.

The number of real solutions is 2.

Learn More

Inverse Function

y=(x-2)^2 for x\geq 2 (Positive number set.)

Change both domain and range.

x=(y-2)^2

Solve for y to simplify the inverse function.

y-2=\sqrt{x}

\therefore y=\sqrt{x} +2

Surprisingly, the intersection of the previous function and the inverse lie on y=x. (Increasing functions.)

Answered by PopularAnswerer01
43

\huge\underline{\underline {\sf{Question}}} :

  • Number of real solution(s) of x² - 4x + 6 = 2 + root ( x-2) is ?

\huge\underline{\underline {\sf{Solution}}} :

\tt\implies \: { x }^{ 2 } - 4x + 4 + 2 = 2 + \sqrt { x - 2 }

\tt\implies \: { ( x - 2 ) }^{ 2 } =  \sqrt { x - 2 }

Let ,

  • \tt \: \sqrt { x - 2 } = x

\tt\implies \: { x }^{ 4 } - x = 0

\tt\implies \: x( { x }^{ 3 } - 1 ) = 0

\tt\implies \: x( x - 1 )( { x }^{ 2 } + x + 1 ) = 0

\tt\implies \: x = 0 , 1

Similar questions