Number of solutions of the equation tanx – secx = 2cosx lying in the interval [0, 2π] is
Answers
So, there can be three solutions: 30°, 150° and 270°.
The number of solution of tan x + sec x = 2 cos x in [0, 2π) is
A. 0
B. 1
C. 2
D. 3
Answer
Answertan x + sec x = 2 cos x
Answertan x + sec x = 2 cos xMultiply equation by cos x
Answertan x + sec x = 2 cos xMultiply equation by cos x1 + sin x = 2 cos2 x
Answertan x + sec x = 2 cos xMultiply equation by cos x1 + sin x = 2 cos2 x1 + sin x = 2(1 - sin2 x)
Answertan x + sec x = 2 cos xMultiply equation by cos x1 + sin x = 2 cos2 x1 + sin x = 2(1 - sin2 x)2 sin2 x + sin x - 1 = 0
Answertan x + sec x = 2 cos xMultiply equation by cos x1 + sin x = 2 cos2 x1 + sin x = 2(1 - sin2 x)2 sin2 x + sin x - 1 = 0(2 sin x - 1)(1 + sin x) = 0
Answertan x + sec x = 2 cos xMultiply equation by cos x1 + sin x = 2 cos2 x1 + sin x = 2(1 - sin2 x)2 sin2 x + sin x - 1 = 0(2 sin x - 1)(1 + sin x) = 0sin x = 1/2 ; sin x = -1
Answertan x + sec x = 2 cos xMultiply equation by cos x1 + sin x = 2 cos2 x1 + sin x = 2(1 - sin2 x)2 sin2 x + sin x - 1 = 0(2 sin x - 1)(1 + sin x) = 0sin x = 1/2 ; sin x = -1So, there can be three solutions: 30°, 150° and 270°.
Answertan x + sec x = 2 cos xMultiply equation by cos x1 + sin x = 2 cos2 x1 + sin x = 2(1 - sin2 x)2 sin2 x + sin x - 1 = 0(2 sin x - 1)(1 + sin x) = 0sin x = 1/2 ; sin x = -1So, there can be three solutions: 30°, 150° and 270°.The correct option is D.