Math, asked by khushi9570, 10 days ago

Number of solutions of the equation z¹⁰ + 31z⁵-32 = 0 for which Re(z)>0

[JEE ADVANCED-2012]​

Answers

Answered by shadowsabers03
10

Given,

\small\text{$\longrightarrow z^{10}+31z^5-32=0$}

Let \small\text{$k=z^5.$} Then,

\small\text{$\longrightarrow k^2+31k-32=0$}

\small\text{$\longrightarrow (k-1)(k+32)=0$}

\small\text{$\Longrightarrow k\in\{-32,\ 1\}$}

\small\text{$\longrightarrow z^5\in\{-32,\ 1\}$}

Consider,

\small\text{$\longrightarrow z^5=-32$}

We see that \small\text{$1=1^r=(e^{i2\pi})^r=e^{i2\pi r}.$} (Recall Euler's form, 1 can be a complex number with argument 2π) So the RHS of the equation can be taken as,

\small\text{$\longrightarrow z^5=-32e^{i2\pi r}$}

\small\text{$\longrightarrow z=\left(-32e^{i2\pi r}\right)^{\frac{1}{5}}$}

\small\text{$\longrightarrow z=-2e^{i\frac{2\pi r}{5}}$}

This represents the 5 complex roots of the equation \small\text{$z^5=-32$} where r is an integer such that 0 ≤ r ≤ 4, or,

\small\text{$\longrightarrow r\in\{0,\ 1,\ 2,\ 3,\ 4\}$}

\small\text{$\longrightarrow\dfrac{2\pi r}{5}\in\left\{0,\ \dfrac{2\pi}{5},\ \dfrac{4\pi}{5},\ \dfrac{6\pi}{5},\ \dfrac{8\pi}{5}\right\}\quad\dots(1)$}

[Note:- The n roots of the equation \small\text{$x^n=a$} are in the form \small\text{$x=a^{\frac{1}{n}}e^{i\frac{2\pi r}{n}}$} where r is an integer variable such that p ≤ r ≤ q where q - p + 1 = n. Usually r is taken 0 ≤ r ≤ n - 1.]

Taking \small\text{$z$} in polar form,

\small\text{$\longrightarrow z=-2\cos\left(\dfrac{2\pi r}{5}\right)-2i\sin\left(\dfrac{2\pi r}{5}\right)$}

Now,

\small\text{$\longrightarrow Re(z)>0$}

\small\text{$\longrightarrow-2\cos\left(\dfrac{2\pi r}{5}\right)>0$}

\small\text{$\longrightarrow\cos\left(\dfrac{2\pi r}{5}\right)<0$}

\small\text{$\Longrightarrow\dfrac{2\pi r}{5}\in\left(2n\pi+\dfrac{\pi}{2},\ 2n\pi+\dfrac{3\pi}{2}\right),\quad n\in\mathbb{Z}\quad\dots(2) $}

Taking (1) ∧ (2),

\small\text{$\longrightarrow\dfrac{2\pi r}{5}\in\left(\dfrac{\pi}{2},\ \dfrac{3\pi}{2}\right)\cap\left\{0,\ \dfrac{2\pi}{5},\ \dfrac{4\pi}{5},\ \dfrac{6\pi}{5},\ \dfrac{8\pi}{5}\right\}\quad (n=0)$}

\small\text{$\longrightarrow\dfrac{2\pi r}{5}\in\left\{\dfrac{4\pi}{5},\ \dfrac{6\pi}{5}\right\}$}

\small\text{$\Longrightarrow z\in\left\{-2e^{i\frac{4\pi}{5}},\ -2e^{i\frac{6\pi}{5}}\right\}\quad\dots(i)$}

Consider,

\small\text{$\longrightarrow z^5=1=e^{i2\pi r}$}

\small\text{$\longrightarrow z=e^{i\frac{2\pi r}{5}}$}

\small\text{$\longrightarrow z=\cos\left(\dfrac{2\pi r}{5}\right)+i\sin\left(\dfrac{2\pi r}{5}\right)$}

Now,

\small\text{$\longrightarrow Re(z)>0$}

\small\text{$\longrightarrow\cos\left(\dfrac{2\pi r}{5}\right)>0$}

\small\text{$\Longrightarrow\dfrac{2\pi r}{5}\in\left(2n\pi-\dfrac{\pi}{2},\ 2n\pi+\dfrac{\pi}{2}\right),\quad n\in\mathbb{Z}\quad\dots(3) $}

Taking (1) ∧ (3),

\small\text{$\longrightarrow\dfrac{2\pi r}{5}\in\left[\left(-\dfrac{\pi}{2},\ \dfrac{\pi}{2}\right)\cup\left(\dfrac{3\pi}{2},\ \dfrac{5\pi}{2}\right)\right]\cap\left\{0,\ \dfrac{2\pi}{5},\ \dfrac{4\pi}{5},\ \dfrac{6\pi}{5},\ \dfrac{8\pi}{5}\right\}\quad (n=0,\ n=1)$}

\small\text{$\longrightarrow\dfrac{2\pi r}{5}\in\left\{0,\ \dfrac{2\pi}{5},\ \dfrac{8\pi}{5}\right\}$}

\small\text{$\Longrightarrow z\in\left\{1,\ e^{i\frac{2\pi}{5}},\ e^{i\frac{8\pi}{5}}\right\}\quad\dots(ii)$}

Taking (i) ∨ (ii) we get,

\small\text{$\longrightarrow z\in\left\{-2e^{i\frac{4\pi}{5}},\ -2e^{i\frac{6\pi}{5}},\ 1,\ e^{i\frac{2\pi}{5}},\ e^{i\frac{8\pi}{5}}\right\}$}

Hence there are 5 solutions.

Similar questions