Math, asked by aagerwal1667, 1 year ago

Numerator of a fraction is 3 less than the denominator. If 4 is added to both numerator and denominator, the value of the fraction increases by 1/8. Find the fraction?? Solve using quadratic

Answers

Answered by BrainlyPopularman
22

ANSWER :

 \\  \to \:  \:  \:  {  \boxed { \bold{ Original \:  \: fraction =  \dfrac{5}{8}   }}} \\

EXPLANATION :

GIVEN :

▪︎ Numerator of a fraction is 3 less than the denominator.

▪︎ When 4 is added to both numerator and denominator, the value of the fraction increases by 1/8.

TO FIND :

• Original fraction = ?

SOLUTION :

▪︎ According to the question

• Numerator of a fraction is 3 less than the denominator.

• Let the Denominator be 'x'.

• So the fraction be  \implies {  \bold{ \dfrac{x - 3}{x} }} \\

▪︎ When 4 is added to both numerator and denominator, the value of the fraction increases by 1/8.

 \\ \implies { \bold{ \frac{(x - 3) + 4}{x + 4}   =  \frac{x - 3}{x}  +  \frac{1}{8}  }} \\

 \\  \implies{ \bold{ \dfrac{x  + 1}{x + 4}   =  \dfrac{8(x - 3) + x}{8x}}} \\

 \\  \implies{ \bold{ \dfrac{x  + 1}{x + 4}   =  \dfrac{9x - 24}{8x}}} \\

  \\  \implies{ \bold{(x + 1)(8x) = (x + 4)(9x - 24)}} \\

  \\  \implies{ \bold{8 {x}^{2}  +8x=  9 {x}^{2} - 24x + 36x - 96 }} \\

  \\  \implies{ \bold{ - {x}^{2}   - 4x  + 96=  0 }} \\     \\  \implies{ \bold{  {x}^{2}    + 4x   -  96=  0 }} \\

  \\  \implies{ \bold{  {x}^{2}   +   12x   - 8x -  96=  0 }} \\

  \\  \implies{ \bold{  x( x+   12)   - 8(x  + 12)=  0 }} \\

  \\  \implies{ \bold{  (x - 8)( x+   12) =  0 }} \\

  \\  \implies{ \bold{  x  =  8 ,x =  -    12}} \\

(1) When (x = 8) :–

 \\  \implies \:  \:  \:  {  \boxed { \bold{ Original \:  \: fraction =  \dfrac{5}{8}   }}} \\

(2) When (x = -12) :–

 \\  \implies \:  \:  \:  {  \boxed { \bold{ Original \:  \: fraction =  \dfrac{5}{4}   (Not \: \: satisfy \: \: the \: \: equation)}}} \\ \\

Hence,  \: \: \:   \therefore \:  \:  \:  {  \boxed { \bold{ Original \:  \: fraction =  \dfrac{5}{8}   }}} \\

Similar questions