English, asked by chrsurya123, 9 months ago

Numerical
If tanA and tans are the roots of the quadratic equation, 322 - 10.- 25 = 0,
then the value of
3sin (A + B) – 10sin(A + B). cos(A+B) - 25cos(A+B) is
M
AMMAS​

Answers

Answered by chetanya18
0

Answer:

MATHS

If tanA and tanB are the roots of the quadratic equation, 3x

2

−10x−25=0, then the value of 3sin

2

(A+B)−10sin(A+B)cos(A+B)−25cos

2

(A+B) is:

December 20, 2019avatar

Anushka Ahsan

SHARE

ANSWER

Given, 3x

2

−10x−25=0

tanA+tanB=

3

10

tanA×tanB=

3

−25

tan(A+B)=

1−tanAtanB

tanA+tanB

1+

3

25

3

10

3

28

3

10

=

28

10

=

14

5

∴tan(A+B)=

14

5

∴sin(A+B)=

221

5

cos(A+B)=

221

14

∴3sin

2

(A+B)−10sin(A+B)cos(A+B)−25cos

2

(A+B)

=3×

221

25

−10×

221

70

−25×

221

196

=

221

75−700−4900

=−25

IF THIS HELPS YOU PLEASE LIKE.

Similar questions