Math, asked by annugoudasb2020, 1 day ago

o find the median for the following distribution table C-i 0-10,10-20,20-30,30-40,40-50 Fi=6,9,15,9,1

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Frequency distribution table is as follow:-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \small\boxed{\begin{array}{c |c|c} \tt{Classes} & \tt{Frequency}& \tt{c.f.} \\ \dfrac{\qquad\qquad}{ \sf 0-10} &\dfrac{\qquad\qquad}{ \sf 6} &\dfrac{\qquad\qquad}{ \sf 6}& \\ \dfrac{\qquad\qquad}{ \sf 10-20} &\dfrac{\qquad\qquad}{ \sf 9}&\dfrac{\qquad\qquad}{ \sf 15} & \\ \dfrac{\qquad\qquad}{ \sf 20-30} &\dfrac{\qquad\qquad}{ \sf 15}&\dfrac{\qquad\qquad}{ \sf 30} & \\ \dfrac{\qquad\qquad}{ \sf 30-40} &\dfrac{\qquad\qquad}{ \sf 9}&\dfrac{\qquad\qquad}{ \sf 39} & \\ \dfrac{\qquad\qquad}{ \sf 40-50} &\dfrac{\qquad\qquad}{ \sf 1}&\dfrac{\qquad\qquad}{ \sf 40}  &\end{array}} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

We know,

\boxed{ \sf Median= l + \Bigg \{h \times \dfrac{ \bigg( \dfrac{N}{2} - cf \bigg)}{f} \Bigg \}} \\

Here,

  • l denotes lower limit of median class

  • h denotes width of median class

  • f denotes frequency of median class

  • cf denotes cumulative frequency of the class preceding the median class

  • N denotes sum of frequency

So, from above calculations, we concluded that

N = 40

So,  \dfrac{N}{2} = 20

So, we get

  • Median class = 20 - 30

  • l = 20

  • h = 10

  • f = 15

  • cf = 15

By substituting all the given values in the formula,

\rm \: Median= l + \Bigg \{h \times \dfrac{ \bigg( \dfrac{N}{2} - cf \bigg)}{f} \Bigg \} \\

\rm \: Median= 20 + \Bigg \{10 \times \dfrac{ \bigg( 20 - 15\bigg)}{15} \Bigg \} \\

\rm \: Median= 20 + \Bigg \{2\times \dfrac{ 5}{3} \Bigg \} \\

\rm \: Median= 20 +  \frac{10}{3}  \\

\rm \: Median= \frac{60 + 10}{3}  \\

\rm \: Median= \frac{70}{3}  \\

\rm\implies \:\boxed{ \rm{ \:\rm \: Median= \frac{70}{3} \:  \approx \:  23.33 \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

1. Mean Using Direct Method

\boxed{ \rm{ \:Mean = \dfrac{ \sum f_i x_i}{ \sum f_i} \: }} \\

2. Mean using Short Cut Method

\boxed{ \rm{ \:Mean = A + \dfrac{ \sum f_i d_i}{ \sum f_i} \: }} \\

3. Mean using Step Deviation Method

\boxed{ \rm{ \:Mean = A + \dfrac{ \sum f_i u_i}{ \sum f_i} \times h \: }} \\

Similar questions