Math, asked by abhinavpb250, 2 days ago

o In the figure (ADB=40 D =40
what is the measure of <ADB
what is the measure of <AEB





solve it​

Attachments:

Answers

Answered by XxSadToxicBoyxX
1

Correct option is

Correct option isC

Correct option isC95

Correct option isC95 ∘

Correct option isC95 ∘

Correct option isC95 ∘ ∠CEB=∠DEA=60

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘ (vert. opp. ∠s)

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘ (vert. opp. ∠s)In △CEB,∠ECB=180

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘ (vert. opp. ∠s)In △CEB,∠ECB=180 ∘

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘ (vert. opp. ∠s)In △CEB,∠ECB=180 ∘ −(60

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘ (vert. opp. ∠s)In △CEB,∠ECB=180 ∘ −(60 ∘

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘ (vert. opp. ∠s)In △CEB,∠ECB=180 ∘ −(60 ∘ +25

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘ (vert. opp. ∠s)In △CEB,∠ECB=180 ∘ −(60 ∘ +25 ∘

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘ (vert. opp. ∠s)In △CEB,∠ECB=180 ∘ −(60 ∘ +25 ∘ )

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘ (vert. opp. ∠s)In △CEB,∠ECB=180 ∘ −(60 ∘ +25 ∘ )=180

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘ (vert. opp. ∠s)In △CEB,∠ECB=180 ∘ −(60 ∘ +25 ∘ )=180 ∘

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘ (vert. opp. ∠s)In △CEB,∠ECB=180 ∘ −(60 ∘ +25 ∘ )=180 ∘ −85

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘ (vert. opp. ∠s)In △CEB,∠ECB=180 ∘ −(60 ∘ +25 ∘ )=180 ∘ −85 ∘

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘ (vert. opp. ∠s)In △CEB,∠ECB=180 ∘ −(60 ∘ +25 ∘ )=180 ∘ −85 ∘ =95

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘ (vert. opp. ∠s)In △CEB,∠ECB=180 ∘ −(60 ∘ +25 ∘ )=180 ∘ −85 ∘ =95 ∘

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘ (vert. opp. ∠s)In △CEB,∠ECB=180 ∘ −(60 ∘ +25 ∘ )=180 ∘ −85 ∘ =95 ∘ (Angle sum prop. of a △)

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘ (vert. opp. ∠s)In △CEB,∠ECB=180 ∘ −(60 ∘ +25 ∘ )=180 ∘ −85 ∘ =95 ∘ (Angle sum prop. of a △)∴ ∠ADB=∠BCA(∠BCE)=95

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘ (vert. opp. ∠s)In △CEB,∠ECB=180 ∘ −(60 ∘ +25 ∘ )=180 ∘ −85 ∘ =95 ∘ (Angle sum prop. of a △)∴ ∠ADB=∠BCA(∠BCE)=95 ∘

Correct option isC95 ∘ ∠CEB=∠DEA=60 ∘ (vert. opp. ∠s)In △CEB,∠ECB=180 ∘ −(60 ∘ +25 ∘ )=180 ∘ −85 ∘ =95 ∘ (Angle sum prop. of a △)∴ ∠ADB=∠BCA(∠BCE)=95 ∘ (Angles in the same segment)

Answered by shreesakthi
0

Answer:

<ADB = 90°

<AEB = 170°

Step-by-step explanation:

it is the correct answer ♥️

please brianlist mark it

Similar questions