o is a point in the rectangle AB C.D. Prove that oa²+oc²=ob²+od²
Answers
Answered by
0
Answer:
Here's your answer
Step-by-step explanation:
For figure see attachment
Let ABCD be the given rectangle with point O within it. Join OA, OB, OC, OD. Through O draw EOF||AB.Then ABFE is a rectangle.
In right ∆OEA and ∆OFC,
OA² = OE² + AE² and OC²= OF²+CF²
OA²+OC²=(OE²+AE²) +(OF²+CF²)
OA²+OC²=OE²+OF²+AE²+CF²………….(1)
In right ∆OFB and ∆ODE,
OB² = OF² + FB² and OD²= OE²+DE²
OB²+OD²=(OF²+FB²) +(OE²+DE²)
OB²+OD²=OE²+OF²+DE²+BF²
OB²+OD²=OE²+OF²+CF²+AE²…………..(2)
[DE=CF & AE=BF]
From eq i & eq ii,
OA² + OC² = OB² + OD²
Hope you understand.
Attachments:
Similar questions