O is a point inside a quadrilateral ABCD. Show that
OA+OB+OC+OD > AC+BD .
Answers
Answered by
0
Hi friend
----------------
Your answer
----------------------
Given that : -
O is a point inside a quadrilateral ABCD.
To prove : - OA + OB + OC + OD > AC + BD.
Now,
-----------
OA + OB > AC .......(I)
OC + OD > BD .........(ii)
Then,
----------
Adding (I) and (ii), we get ,
-----------------------------------------
OA + OB + OC + OD > AC + BD
Hence, proved.
HOPE IT HELPS
#ARCHITECTSETHROLLINS
✯ BRAINLY STAR ✯
----------------
Your answer
----------------------
Given that : -
O is a point inside a quadrilateral ABCD.
To prove : - OA + OB + OC + OD > AC + BD.
Now,
-----------
OA + OB > AC .......(I)
OC + OD > BD .........(ii)
Then,
----------
Adding (I) and (ii), we get ,
-----------------------------------------
OA + OB + OC + OD > AC + BD
Hence, proved.
HOPE IT HELPS
#ARCHITECTSETHROLLINS
✯ BRAINLY STAR ✯
Similar questions