Math, asked by shivaramkumarsreeram, 8 months ago

O is a point inside a triangle ABC. The Bisectors Of Angle Of AOB, Angle BOS And Angle COA meet the sides BC , CA AND AB in Point AB In Point E , F and D Respectively.Prove That AD.BE.CEF = DB.EC.FA​

Answers

Answered by Anonymous
120

\sf\large{\underline{\underline{In\:Triangle\:AOD,}}}

\sf\large{OD\:is\:the\:bisector\:of\:angle\:AOB}

\sf\large{\red{\implies \dfrac{OA}{OB} = \dfrac{AD}{DB}\: \: ........(i)}}

\sf\large{ \: \: }

\sf\large{\underline{\underline{In\:Triangle\:BOC,\:OE\:is\: the\:Bisector\:of\:angle\:BOC.}}}

\sf\large{\purple{\implies \dfrac{OB}{OC} = \dfrac{BE}{EC} \: \: ........(ii)}}

\sf\large{ \: \: }

\sf\large{\underline{\underline{In\:Triangle\:COA}}}

\sf\large{OF\:is \: the\:bisector\:of\:angle\:COA.}

\sf\large{\orange{\implies \dfrac{OC}{OA} = \dfrac{CF}{FA} \: \: ......(iii)}}

\sf\large{ \: \: }

\sf\large{\longrightarrow Multiplying\:the\:corresponding\:sides\:of\:(i),\:(ii)\:and\:(iii)}

\sf\large{We\:get}

\sf\large{\red{\implies \dfrac{OA}{OB} × \dfrac{OB}{OC} × \dfrac{OC}{OA} = \dfrac{AD}{DB} × \dfrac{BE}{EC} × \dfrac{CF}{FA}}}

\sf\large{ \: \: }

\sf\large{\purple{\implies 1 = \dfrac{AD}{DB} × \dfrac{BE}{EC} × \dfrac{CF}{FA}}}

\sf\large{ \: \: }

\sf\large{\orange{\implies DB× EC × FA = AD × BE × CF}}

\sf\large{ \: \: }

\sf\large{\underbrace{\green{\implies AD × BE × CF = DB × EC × FA}}}

\sf\large{ \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \: \: }\sf\large \: {\bold{\fbox{\color{red}{Hence\:Proved}}}}

Attachments:
Similar questions